
Engineering Software
Software Engineering

CS 130

Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal

Jones and Bartlett Learning

Building a system
requires software

engineering

https://flic.kr/p/cNotkw

https://flic.kr/p/cNotkw

As size and complexity increased so did the
failure rate

Engineering Software

Problem Transformation

increases in size
and complexity

Solution

increases in size
and complexity

increased effort
due to size and

complexity

“Engineering” Software was thought to be the
cure

• Put some discipline into “programming” !

• Do more than just coding/programming!

• ‘Study’ (model/measure),

• ‘Understand’ (analyze),

• ‘Improve’ (change) this field!

Engineering Software

Chaos Report and Software Project Success/
Failures

• Chaos Report (1995) sampled some 300 software projects

and reported that only about 16% of those projects

“completed,” “on-time,” and “within-budget” !

Engineering Software

84% of projects failed

Chaos Report and Software Project Success/
Failures

• Chaos Report (2009) stated that software projects have

improved with 32% “completed,” “on-time,” and “within-

budget.”

Engineering Software

68% of projects still failed

Software Project Success & Failure Factors 
(Chaos Report)

• User Involvement

• Executive Management Support

• Clear Requirements

• Proper Planning

Engineering Software

Attributes of projects that “succeeded”

Software Project Success & Failure Factors 
(Chaos Report)

• Lack of user input

• Incomplete user requirements and specification

• Changing requirements and specifications

Engineering Software

Attributes of projects that were “challenged”*

*completed and operational but over-budget or
over-time

Software Project Success & Failure Factors 
(Chaos Report)

• Incomplete requirements

• Lack of user involvement

• Lack of resources

Engineering Software

Attributes of projects that were “impaired and
ultimately cancelled”*

Software Product Failures (Capers Jones Study)

Engineering Software

Software Product Failures (Capers Jones Study)

Engineering Software

All errors can be serious
and costly

Should we worry about
coding or requirement

errors more? why?

Why can requirement
errors be so costly if not

caught?

Coordination & Non-Technical Concerns
• As software projects grew in size and complexity, problems went

beyond just code and software. Other “non-technical” issues

became apparent:

• Executive commitment and leadership

• Thorough planning of both business and technical processes

• Skilled and experienced work-force

• Management focus and project monitoring

• Willingness to make changes and adjustments

Engineering Software

US General Accounting Office Report  
to US Senate (2004)
• 3 “Key” strategies to ensuring delivery of:

• high quality software

• on-time and

• within-budget:

• Focused attention on software development environment (people/

tools/management/etc.)

• “Disciplined” development process

• Methodical use of metrics to gauge cost, schedule, and functional

performance targets

Engineering Software

“Birth” of Software Engineering

• The early experiences of writing difficult but “small programs” did

NOT provide us with the road map when we started to build “large”

operating system, database, commercial system, etc.

Engineering Software

“Birth” of Software Engineering

• What is needed to develop large and complex software “products”

and what is needed to control such projects ?

• More “discipline” is needed in this field:

• “SOFTWARE ENGINEERING”

• (NATO conference - 1968)

Engineering Software

Well that’s nice, but what is

Software Engineering?

What is Software Engineering?

• “multi-person construction of multi-version software”

• David Parnas

Engineering Software

What is Software Engineering?

• “an engineering discipline whose focus is the cost-effective

development of high quality software system”

• Sommerville

Engineering Software

What is Software Engineering?

• application of computing tools to solving problems

• Pfleeger

Engineering Software

What is Software Engineering?

• “form of engineering that applies the principles of computer science

and mathematics to achieving cost-effective solutions to software

problems”

• CMU/SEI-90-TR-003

Engineering Software

What is Software Engineering?

• “application of a systematic, disciplined, quantifiable approach to

the i) development of, ii) operation of, and iii) maintenance of

software”

• IEEE std 610-1990

Engineering Software

What is Software Engineering?

• Software Engineering is a broad field that touches upon all aspects

of developing and supporting a software system, spanning across

the following key areas:

• Technical and business processes

• Specific methodologies and techniques

• Product characterization and metrics for measurements

• People skills and team work

• Project coordination and management

Engineering Software

Relevancy of Software Engineering
• Software is a serious business

• Reached $180 billion in 2000

• It is ubiquitous across multiple industries

• The business of software has graduated from a “garage” operation

to an “enterprise” profession ----- including recent “Facebook”

• There is a move to treat software engineering as an engineering

profession

• 15 universities have received accreditation (2009) from accreditation

board of engineering and technology for SE specifically

Engineering Software

Software Engineering “Professionals”

• There is no equivalent “professional engineer” (PE) designation for

software engineers, yet.

• Except in Texas where the board of professional engineers

adopted software engineering as a specific discipline under which

en engineering license may be issued.

Engineering Software

So -- how do we become more “professional”
in Software Engineering 

 
Any More Guidance?

IEEE-CS/ACM Version 5.2 Report
• 8 principles** for ethics and professional practices in software

engineering

• Software engineers shall act consistently with the public interest

• Software engineers shall act in a manner that is in the best

interest of their client and employer, consistent with the public

interest

• Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible

Engineering Software

IEEE-CS/ACM Version 5.2 Report
• 8 principles** for ethics and professional practices in software

engineering

• Software engineers shall maintain integrity and independence in

their professional judgment

• Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of software

development and maintenance

• Software engineers shall advance the integrity and reputation of

the profession consistent with the public interest

Engineering Software

IEEE-CS/ACM Version 5.2 Report
• 8 principles** for ethics and professional practices in software

engineering

• Software engineers shall be fair to and supportive of their

colleagues

• Software engineers shall participate in lifelong learning regarding

the practice of their profession and shall promote an ethical

approach to the practice of the profession.

Engineering Software

A “Simpler” Set of Behavioral Rules

• Respect others

• Strive for fairness

• Perform to one’s best capability

• Follow the law

Engineering Software

“General Principles”

• Different from other engineering disciplines such as civil or

mechanical, there is no one set of “universal principles” in

software engineering that is agreed to by everyone. Neither is

there any “law” of software engineering such as Newton’s law

of motion in physics

Engineering Software

“General Principles”

• There are, however, several that are well received and

respected.

• Davis’s Principles

• Royce’s Principles

• Wasserman’s Concepts

Engineering Software

Davis’s Early 15 principles
1. Make quality number 1

2. High quality software is possible

3. Give products to customers early

4. Determine the problem before writing the requirements

5. Evaluate design alternatives

6. Use an appropriate process model

7. Use different languages for different phases

8. Minimize intellectual distances

9. Put techniques before tools

10. Get it right before you make it faster

11. Inspect code

12. Good management is more important than good technology

13. People are the key to success

14. Follow with care

15. Take responsibility

Engineering Software

Royce’s More “Modern” set of Principles
1. Base the process on an architecture first approach

2. Establish iterative process --- address risk early

3. Emphasize component-based development to reduce effort

4. Establish change management

5. Use round-trip engineering – a form of iterative process

6. Use model-based and machine processable notations for

design

7. Establish process for quality control and project assessment

8. Use approach that allows artifacts to be demonstrated early

9. Plan to have incremental releases

10. Establish a configurable process to suit the needs

Engineering Software

Do you agree with these? Why?

Wasserman’s Fundamental Concepts
1. Abstraction

2. Analysis and design methods and notation

3. User interface prototyping

4. Modularity and architecture

5. Reuse

6. Life cycle and process

7. Metrics

8. Tools and integrated environment

Engineering Software

Important concepts -- how do they relate to
earlier listed the principles from Davis or

Royce?

Software Engineering is about identifying
repeatable generalizable processes that can

deliver

Engineering Software

High-quality software

On time

Within budget

