
DESIGN: CHARACTERISTICS AND
METRICS
Software Engineering
CS 130
Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal
Jones and Bartlett Learning

CHARACTERIZING “GOOD” DESIGN

•  Besides the obvious - - - design should match the
requirements - - - there are two �basic� characteristics:

–  Consistency across design:

•  Common UI
–  looks
–  Logical flow

•  Common error processing
•  Common reports
•  Common system interfaces
•  Common help
•  All design carried to the same depth level (what do you think?)

–  Completeness of the design
•  All requirements are accounted for
•  All parts of the design is carried to its completion, to the same

depth level

INTUITIVELY, COMPLEXITY IS RELATED TO “GOOD/BAD” DESIGN

•  Some �Legacy Characterization� of Design
Complexity

–  Halstead metrics
–  McCabe�s Cyclomatic Complexity metric (most

broadly used)
–  Henry-Kafura Information Flow (Fan-in/Fan-out)

metrics
–  Card and Glass design complexity metrics

HALSTEAD METRICS
•  Developed by Maurice Halstead of Purdue in the 1970�s to mostly

analyze program source code complexity.
•  Used 4 fundamental units of measurements from code:

–  n1 = number of distinct operators
–  n2 = number of distinct operands
–  N1 = sum of all occurrences of the n1
–  N2 = sum of all occurrences of the n2

•  Program vocabulary, n = n1 + n2
•  Program length, N = N1 + N2
•  Using these, he defined 4 metrics:

–  Volume , V = N * (Log2 n)
–  Potential volume , V@ = (2 + n2@) log2 (2+n2@) (based on most �succinct�

program�s n2 --- thus n2@)
–  Program Implementation Level, L = V@/ V
–  Effort, E = V / L

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

•  T.J. McCabe�s Cyclomatic complexity metric is
based on the belief that program quality is related to
the complexity of the program �control flow�.

n1

n2

n3

n5

n6

n4

e1
e2

e7

e3

e4 e5

e6

Region 1

Region 2

Cyclomatic complexity = E - N + 2p
 where E = number of edges
 N= number of nodes
 p = number of connected
 components (usually 1)

So, for this control flow :
 7 edges – 6 nodes + 2 = 3

Cyclomatic complexity number can also
be computed as follows:
 - number of binary decision +1
 - number of closed regions + 1

Can be computed with static analysis

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

MAINTAINABILITY INDEX

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

MAINTAINABILITY INDEX

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

WHAT IS THE DIFFERENCE?
• Static Analysis

• Automatic analysis conducted on source code

• Every IDE worth it’s salt does this

• Dynamic Analysis

• Automatic analysis conducted on running code

• “profiling”

STATIC ANALYSIS VS RUN-TIME ANALYSIS

HENRY-KAFURA (FAN-IN AND FAN-OUT)
•  Henry and Kafura metric measures the inter-modular

flow, which includes:
–  Parameter passing
–  Global variable access
–  inputs
–  outputs

•  Fan-in : number of inter-modular flow into a program
•  Fan-out: number of inter-modular flow out of a program

Module�s Complexity, Cp = (fan-in x fan-out)2

for the �picture� above: Cp = (3 x 1)2 = 9

Module, P non-linear

Software metrics by Alexander Serebrenik

http://www.win.tue.nl/~aserebre/2IS55/2011-2012/10.pdf

CARD AND GLASS (HIGHER LEVEL COMPLEXITY)

•  Card and Glass used the same concept of fan-in and
fan-out to describe design complexity:
–  Structural complexity of module x

•  Sx = (fan-out)2

–  Data complexity

•  Dx = Px / (fan-out +1), where Px is the number of variables
passed to and from the module

–  System complexity

•  Cx = Sx + Dx

Note: Except for Px, fan-in is not
considered here

A LITTLE “DEEPER” ON GOOD DESIGN ATTRIBUTES

•  Easy to:
–  Understand
–  Change
–  Reuse
–  Test
–  Integrate
–  Code

•  Believe that we can get many of these �easy
to�s� if we consider:

–  Cohesion
–  Coupling

COHESION
•  Cohesion of a unit, of a module, of an object, or a component

addresses the attribute of �degree of relatedness��within that
unit, module, object, or component.

Functional

Sequential

Communicational

Procedural

Temporal

Logical

Coincidental

Levels of C
ohesion

w
here Functional is the

�highest�

Performing more than 1
unrelated functions

Performing 1 single function

Higher the better

USING PROGRAM AND DATA SLICES TO MEASURE
PROGRAM COHESION

•  Bieman and Ott introduced a measure of program cohesion using the
following concepts from program and data slices:
–  A data token is any occurrence of variable or constant in the program
–  A slice within a program is the collection of all the statements that can

affect the value of some specific variable of interest.
–  A data slice is the collection of all the data tokens in the slice that will

affect the value of a specific variable of interest.
–  Glue tokens are the data tokens in the program that lie in more than one

data slice.
–  Super glue tokens are the data tokens in the program that lie in every data

slice of the program

Measure Program Cohesion through 2 metrics:

 - weak functional cohesion = (# of glue tokens) / (total # of data tokens)
 - strong functional cohesion = (#of super glue tokens) / (total # of data tokens)

 A Pseudo-Code Example
of Functional Cohesion

Measure

Finding the maximum and
the minimum values
procedure:

MinMax (z, n)
Integer end, min, max, i ;
end = n ;
max = z[0] ;
min = z[0] ;
For (i = 0, i = < end , i++) {
 if z[i] > max then max = z[i];
 if z[i] < min then min = z[i];
 }
 return max, min;

Data Tokens:
z1
n1
end1
min1
max1
i1
end2
n2
max2
z2
01
min2
z3
02
i2
03
i3
end3
i4
z4
i5
max3
max4
z5
i6
z6
i7
min3
min4
z7
i8
max5
min5 (33)

Slice max:
z1
n1
end1
max1
i1
end2
n2
max2
z2
01
i2
03
i3
end3
i4
z4
i5
max3
max4
z5
i6
max5
 (22)

Slice min:
z1
n1
end1
min1
i1
end2
n2
min2
z3
02
i2
03
i3
end3
i4
z6
i7
min3
min4
z7
i8
min5
 (22)

Glue Tokens:
z1
n1
end1
i1
end2
n2
i2
03
i3
end3
i4 (11)

Super Glue:
z1
n1
end1
i1
end2
n2
i2
03
i3
end3
i4 (11)

EXAMPLE OF PSEUDO-CODE COHESION METRICS
•  For the example of finding min and max, the glue tokens are the

same as the super glue tokens.
–  Super glue tokens = 11
–  Glue tokens = 11

•  The data slice for min and data slice for max turns out to be the
same number, 22

•  The total number of data tokens is 33
The cohesion metrics for the example of min-max are:
 weak functional cohesion = 11 / 33 = 1/3
 strong functional cohesion = 11 / 33 = 1/3

If we had only computed one function (e.g. max), then :
 weak functional cohesion = 22 / 22 = 1
 strong functional cohesion = 22/ 22 = 1

COUPLING
•  Coupling addresses the attribute of �degree of

interdependence��between software units, modules
or components.

Content Coupling

Common Coupling

Control Coupling

Stamp Coupling

Data Coupling Passing only the necessary information

No Coupling Ideal, but not practical

Accessing the internal data or procedural information

Levels of
coupling w

here
D

ata coupling is
low

est

Lower the better

CHIDAMBER AND KEMERER (C-K) OO METRICS

•  Weighted Methods per class (WMC)
•  Depth of Inheritance Tree (DIT)
•  Number of Children (NOC)
•  Coupling Between Object Classes (CBO)
•  Response for a Class (RFC)
•  Lack of Cohesion in Methods (LCOM)
Note that LCOM is a reverse measure in that high LCOM indicates
low cohesion and possibly high complexity. #p = number of pairs of
methods in class that have no common instance variable; #q = number
of pairs of methods in the class that have common instance variables
LCOM = #p - #q

COHESION AND COUPLING

C
ohesion

C
oupling

High Level

Low Level

Strong

Weak Loose

Tight

ORIGIN OF LAW OF DEMETER

•  A design �guideline� for OO systems that originated
from the Demeter System project at:

–  Northeastern University in the 1980�s
–  Aspect-Oriented Programming Project

•  Addresses the design coupling issue through
placing constraints on messaging among the objects

–  Limit the sending of messages to objects that are directly
known to it

LAW OF DEMETER

•  An object should send messages to only the
following kinds of objects:

–  the object itself
–  the object�s attributes (instance variables)
–  the parameters of the methods in the object
–  any object created by a method in the object
–  any object returned from a call to one of the

methods of the object
–  any object in any collection that is one of the

above categories

USER INTERFACE
•  Mandel�s 3 �golden rules� for UI design

–  Place the user in control
–  Reduce the users� memory load (G. Miller�s 7 + or – 2)
–  Consistency (earlier - design completeness and consistency)

•  Shneiderman and Plaisant (8 rules for design)

–  Consistency
–  Short cuts for frequent (or experienced) users
–  Informative feedback
–  Dialogues should result in closure
–  Strive for error prevention and simple error handling
–  Easy reversal of action (�undo� of action)
–  Internal locus of control
–  Reduce short term memory

UI DESIGN PROTOTYPE AND “TEST”

•  UI design prototypes:
–  Low fidelity (with cardboards)
–  High fidelity (with �story board� tools)

•  Usability �laboratories test� and statistical
analysis
–  # of subjects who can complete the tasks within

some specified time
–  Length of time required to complete different tasks
–  Number of times �help� functions needed
–  Number of times �redo� used and where
–  Number of times �short cuts� were used

