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Processing Steps in Crawling
• Pick a URL from the frontier (how to prioritize?)


• Fetch the document (DNS lookup)


• Parse the URL


• Extract Links


• Check for duplicate content


• If not add to index


• For each extracted link


• Make sure it passes filter (robots.txt)


• Make sure it isn’t in the URL frontier

Robust Crawling



Domain Name Server
• A lookup service on the internet


• Given a URL, retrieve its IP address


• www.djp3.net -> 45.79.205.40


• This service is provided by a distributed set of servers


• Latency can be high


• Even seconds

DNS

http://www.djp3.net


Domain Name Server

• Common OS implementations of DNS lookup are blocking


• One request at a time


• Solution:


• Caching


• Batch requests


• Custom resolvers

DNS



Domain Name Server

DNS dig +trace www.djp3.net

Root Name 
Server

.net
Name 
Server

djp3.net
Name 
Server

Where is www.djp3.net?

Ask 192.5.6.30

{A}.ROOT-SERVERS.NET = 198.41.0.4

{A}.GTLD-SERVERS.net = 192.5.6.30

Ask 72.1.140.145

{ns1}.speakeasy.net =72.1.140.145

Use 69.17.116.124

Give me a web page

www.djp3.net = 69.17.116.124
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DNS What really happens

Give me a www.djp3.net

flickr:crankyT

The User

Firefox DNS 
cache

OS DNS 
Resolver

OS DNS 
Cache

OS specified DNS Server
ns1.ics.uci.edu

DNS Cache

Host table
Client

Name Server



Class Exercise
• Calculate how long it would take to completely fill a DNS 

cache.


• How many active hosts are there?


• What is an average lookup time?


• Do the math.

DNS

http://www.flickr.com/photos/lurie/298967218/

http://www.informationretrieval.org






Public DNS Servers

http://www.flickr.com/photos/lurie/298967218/

• Why run a DNS lookup 

service? 

• It’s your administrative 

domain 

• A public good 

• It helps your other business 

• You can make money on bad 

queries 

• Mobile servers need special 

attention

http://www.informationretrieval.org
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Parsing: URL normalization
• When a fetched document is parsed


• some outlink URLs are relative 

• For example:


• http://en.wikipedia.org/wiki/Main_Page


• has a link to “/wiki/Special:Statistics”


• which is the same as


• http://en.wikipedia.org/wiki/Special:Statistics


• Parsing involves normalizing (expanding) relative URLs

Parsing

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics


Parsing: URL normalization
• When a fetched document is parsed


• some outlink URLs are protocol-relative 

• For example:


• http://www.starbucks.com/


• has a “<script src=“//cdn.optimizely.com/js/6558036.js"></script>"


• which matches the protocol used to load it


• “http:” or “https:” or “file:” //cdn.optimizely.com/js/6558036.js 

Parsing

http://www.starbucks.com/
http://cdn.optimizely.com/js/6558036.js
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Content Seen?
• Duplication is widespread on the web


• If a page just fetched is already in the index, don’t process it 

any further


• This can be done by using document fingerprints/shingles


• A type of approximate hashing scheme


• Similar to watermarking, SIFT features, etc.

Duplication



• \

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Compliance with webmasters wishes...
• Robots.txt


• Filters is a regular expression for a URL to be excluded


• How often do you check robots.txt?


• Cache to avoid using bandwidth and loading web 

server


• Sitemaps


• A mechanism to better manage the URL frontier

Filters
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• For a one-time crawl


• Test to see if an extracted,parsed, filtered URL


• has already been sent to the frontier.


• has already been indexed.


• For a continuous crawl


• See full frontier implementation:


• Update the URL’s priority


• Based on staleness


• Based on quality


• Based on politeness

Duplicate Elimination



• The key goal for the architecture of a distributed crawl is 

cache locality


• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness


• Geographically distributed for speed


• Partition the hosts being crawled across nodes


• Hash typically used for partition


• How do the nodes communicate?

Distributing the crawl
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• Freshness


• Crawl some pages more often than others


• Keep track of change rate of sites


• Incorporate sitemap info


• Quality


• High quality pages should be prioritized


• Based on link-analysis, popularity, heuristics on content


• Politeness


• When was the last time you hit a server?

URL Frontier



• Freshness, Quality and Politeness


• These goals will conflict with each other


• A simple priority queue will fail because links are bursty


• Many sites have lots of links pointing to themselves 

creating bursty references


• Time influences the priority


• Politeness Challenges


• Even if only one thread is assigned to hit a particular host 

it can hit it repeatedly


• Heuristic : insert a time gap between successive requests

URL Frontier



• To fetch 1,000,000,000 pages in one month...


• a small fraction of the web


• we need to fetch 400 pages per second !


• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough

Magnitude of the crawl



Overview
• Introduction


• URL Frontier


• Robust Crawling


• DNS


• Various parts of architecture


• URL Frontier


• Index


• Distributed Indices


• Connectivity Servers

Web Crawling Outline
\
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• URLs flow from top to bottom


• Front queues manage priority


• Back queue manage politeness


• Each queue is FIFO

URL Frontier Implementation - Mercator 
Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf


• Prioritizer takes URLS and assigns a 

priority


• Integer between 1 and F


• Appends URL to appropriate 

queue


• Priority


• Based on rate of change


• Based on quality (spam)


• Based on application

URL Frontier Implementation - Mercator 

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



• Selection from front queues is 

initiated from back queues


• Pick a front queue, how?


• Round robin


• Randomly


• Monte Carlo


• Biased toward high priority

URL Frontier Implementation - Mercator 
Back queues
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URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• Each back queue is non-empty 

while crawling 

• Each back queue has URLs from 

one host only 

• Maintain a table of URL to back 

queues (mapping) to help



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• Timing Heap 

• One entry per queue 

• Has earliest time that a host can 

be hit again 

• Earliest time based on 

• Last access to that host 

• Plus any appropriate heuristic 

• robots.txt “crawl-delay” 

• sitemaps instruction



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• A crawler thread needs a URL 

• It gets the timing heap root 

• It gets the next eligible queue 

based on time, b. 

• It gets a URL from b 

• If b is empty 

• Pull a URL v from front queue 

• If back queue for v exists place 

it in that queue, repeat. 

• Else add v to b - update heap.



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• How many queues? 

• Keep all threads busy 

• ~3 times as many back queues 

as crawler threads 

• Web-scale issues 

• This won’t fit in memory 

• Solution 

• Keep queues on disk and 

keep a portion in memory.



URL Frontier Implementation

Mercator - walk through the process 

\
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Overview
• Introduction


• URL Frontier


• Robust Crawling
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• Various parts of architecture


• URL Frontier
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The index
• Why does the crawling architecture exists?


• To gather information from web pages (aka documents).


• What information are we collecting?


• Keywords


• Mapping documents to a “bags of words” (aka vector 

space model)


• Links


• Where does a document link to?


• Who links to a document?

Indices




