Web Crawling

Introduction to
_Information Retrieval

Content adapted from Hinrich Schitze
http://www.informationretrieval.org

http://www.informationretrieval.org

A Robust Crawl Architecture

DNS

Fetch

Finger-
prints

Seen? —»

Robots.txt

URL
Filter

URL Frontier Queue

>
URL
Index

Duplicate
Elimination

Processing Steps in Crawling

® Pick a URL from the frontier (how to prioritize?)

® Fetch the document (DNS lookup)
® Parse the URL

® Extract Links
® Check for duplicate content

® |f not add to index

® For each extracted link
® Make sure it passes filter (robots.txt)

® Make sure it isn’t in the URL frontier

N

Domain Name Server

® A lookup service on the internet
® Given a URL, retrieve its IP address

* www.djp3.net -> 45.79.205.40

® This service is provided by a distributed set of servers
® Latency can be high

® Even seconds

http://www.djp3.net

D]\

Domain Name Server

® Common OS implementations of DNS lookup are blocking
® One request at atime

® Solution:
® (Caching
® Batch requests

® (Custom resolvers

+trace www.djp3.net

Root Name
Server

{A}.ROOT-SERVERS.NET = 198.41.0.4

Ask 192.5.6.30

/ .net
Where is www.djp3.net? Name {A}.GTLD-SERVERS.net = 192.5.6.30
— Server

Ask 72.1.140.145

Use 69.17.116.124

djp3.net
Name
Server

{ns1}.speakeasy.net =72.1.140.145

Give me a web page

www.djp3.net = 69.17.116.124

What really happens

"° | {AL.ROOT-SERVERS.NET = 198.41.0.4

Ask 192.5.6.30

{A}.GTLD-SERVERS.net = 192.5.6.30

Name Server
DNS Cache |e——»p

{ns1}.speakeasy.net =72.1.140.145

www.djp3.net = 69.17.116.124

OS specified DNS Server
ns1.ics.uci.edu

OS DNS Client

Host table Cache

OS DNS
Resolver

Firefox DNS
cache

The User
flickr:crankyT

Give me a www.djp3.net —»

Fi rgofogx

D]\

Class Exercise

® (Calculate how long it would take to completely fill a DNS

cache.

® How many active hosts are there?

® What is an average lookup time?

® Do the math.

http://www.flickr.com/photos/lurie/298967218/

http://www.informationretrieval.org

)N
®

Google Public DNS e Why run a DNS lookup

What is Google Public DNS?

- Google Public DNS is a free, global Domain
alternative to your current DNS provider.

zoneedlt I UpenDNS

service?
@®®

® |t's your administrative

domain
e A publicgood
e |t helps your other business

® You can make money on bad

(DynDNS...

by Dynamic Matwork Sarvicas ing, queries

e Mobile servers need special

attention

http://www.flickr.com/photos/lurie/298967218/

http://www.informationretrieval.org

A Robust Crawl Architecture

P >
Robots.txt URL
DNS Index
Parse
/ ~a)
Fetch Seen? —» U.RL —> Quphca_te
Filter Elimination
. _________________J & T— . _________________J . _____________J

URL Frontier Queue

Parsing: URL normalization

® When a fetched document is parsed
® some outlink URLs are

® For example:

® http://en.wikipedia.org/wiki/Main Page

® has a link to “/wiki/Special:Statistics”

® which is the same as

® http://en.wikipedia.org/wiki/Special:Statistics

® Parsing involves normalizing (expanding) relative URLs

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics

Parsing: URL normalization

® When a fetched document is parsed

® some outlink URLs are

® For example:

http://www.starbucks.com/

has a “<script src=*//cdn.optimizely.com/js/6558036.js"></script>"

which matches the protocol used to load it

“http:” or “https:” or “file:” /cdn.optimizely.com/js/6558036.js

http://www.starbucks.com/
http://cdn.optimizely.com/js/6558036.js

P A
Robots.ixt URL
Index

DNS
Parse
/ ~)
Fetch Seen? —»» U.RL ——» Duphca}e
Filter Elimination
T e __________________J T— . __________________J T

URL Frontier Queue

Content Seen?

® Duplication is widespread on the web

® |If a page just fetched is already in the index, don’t process it
any further

® This can be done by using document /shingles
® A type of approximate hashing scheme

® Similar to watermarking, SIFT features, etc.

P A
Robots.ixt URL
Index

DNS
Parse
/ ~)
Fetch Seen? —»» U.RL ——» Duphca}e
Filter Elimination
T e __________________J T— . __________________J T

URL Frontier Queue

Compliance with webmasters wishes...

® Robots.ixt

® Filters is a regular expression for a URL to be excluded
® How often do you check robots.txt?
® (Cache to avoid using bandwidth and loading web
server

® Sitemaps

® A mechanism to better manage the URL frontier

P A
Robots.ixt URL
Index

DNS
Parse
/ ~)
Fetch Seen? —»» U.RL ——» Duphca}e
Filter Elimination
T e __________________J T— . __________________J T

URL Frontier Queue

| [] []
‘T |\)

® For a one-time crawl

® Test to see if an extracted,parsed, filtered URL
® has already been sent to the frontier.
® has already been indexed.
® For a continuous crawl
® See full frontier implementation:

® Update the URL'’s priority

® Based on staleness

® Based on quality

® Based on politeness

The key goal for the architecture of a distributed crawl is

cache locality

We want multiple crawl threads in multiple processes at
multiple nodes for robustness

® Geographically distributed for speed

Partition the hosts being crawled across nodes

® Hash typically used for partition

How do the nodes communicate?

“.
P — >
Robots.txt URL

Index

DNS
Parse T T T T (
/ | A]
Fetch Seen? .| URL Host Duplicate
Filter Splitter Elimination
—

URL Frontier Queue

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

® Freshness

® Crawl some pages more often than others
® Keep track of change rate of sites
® Incorporate sitemap info
® Quality
® High quality pages should be prioritized
® Based on link-analysis, popularity, heuristics on content

® Politeness

® When was the last time you hit a server?

® Freshness, Quality and Politeness

® A simple priority queue will fail because links are bursty
® Many sites have lots of links pointing to themselves
creating bursty references
® Time influences the priority

® Politeness Challenges

® Even if only one thread is assigned to hit a particular host
it can hit it repeatedly

® Heuristic : insert a time gap between successive requests

To fetch 1,000,000,000 pages in one month...

® a small fraction of the web
we need to fetch 400 pages per second !
Since many fetches will be duplicates, unfetchable, filtered,

etc. 400 pages per second isn’t fast enough

e

Overview

® |ntroduction

® URL Frontier
® Robust Crawling
® DNS

® Various parts of architecture

® URL Frontier

® |ndex
® Distributed Indices

® Connectivity Servers

“.
P — >
Robots.txt URL

Index

DNS
Parse T T T T (
/ | A]
Fetch Seen? .| URL Host Duplicate
Filter Splitter Elimination
—

URL Frontier Queue

The output of the URL Filter at each node is sent to the Duplicate
Eliminator at all other nodes

" Y[| ‘TI1T)YIE=T T 16&T - YN = \/|E “‘

l
Prioritizer
;4 ® URLs flow from top to bottom

_ 1_‘/2 F\%
. " "
R Front queues manage priority
Queues
A BA A\ ® Back queue manage politeness
Front Queue Selector ® Each gueue s FIFO
—
Back Queue Router 4—‘ Host to Back Queue I
Mapping Table
ﬁ
1 2 B
J _/ _—
B "Back"
Queues
T L C

Back Queue Selector Timing Heap

OJ0X0

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf

- TIL)IECT T 1111 A~ NN - Ve ~4 1 () “‘

Front queues

Prioritizer

1 2
' 4

nys
TN

%

.

\%

F "Front"
Queues

£
—

Front Queue Selector

toumn o |

® Prioritizer takes URLS and assigns|a
priority
® Integer between 1 and F
® Appends URL to appropriate
queue
® Priority

® Based on rate of change

® Based on quality (spam)

® Based on application

]

Back queues

v

Back Queue Router Host to Back Queue
Mapping Table

1 2 B

4 S

B "Back"

Queues

%

N/ N/
\“/

Back Queue Selector Timing Heap
® Monte Carlo

0100

oo \V/l~ “‘

Selection from front queues|is
Initiated from back queues
Pick a front queue, how?
® Round robin

® Randomly

® Biased toward high priority

Back queues

ontier Implementation - Mercatc “_

+ ® Each back queue is non-empty
Back Queue Router Hoﬂggp?ﬁgﬁ_i‘fgue while crawlin g
e e ¢ Each back queue has URLs from
B "Back"
Queues
A BA A\ N
—_—t, ¢ Maintain a table of URL to back

Back Q Select Timing H .
Wﬂ@ queues (mapping) to helf

D

0100

.l‘ ll.‘ll‘l-.l\“

Back queues

® Timing Heap

: e One entry per queue

Back Queue Router Host to Back Queue

Mapping Table e Has earliest time that a host can

1 2 B

—] be hit again
Quees e FEarliest time based on
Rl B R 7
T L e |ast access to that host

Back Queue Selector Timing Heap
e Plus any appropriate heuristic

@ @ @ ® robots.txt “crawl-delay”

® sitemaps instruction

ontier Implementation - Mercatc “_

Back queues

e A crawler thread needs a URL

+ ® |t gets the timing heap root

Back Queue Router aongtane | @ It gets the next eligible queue
e N based on time, b.
B Back’ e [tgetsaURLfromb
E\E‘\ ‘/E e If bisempty

Wﬂg ® Pulla URL v from front queue
@ @ @ ¢ |f back queue for v exists place

it in that queue, repeat.

e Else add v to b -update heap.

~ ontier Implementation - Me “_

Back queues

¢ How many queues?

+ e Keep all threads busy

Host to Back Queue

Back Gueue oter Mapping Table e -3times as many back queue:
1 2 B
B g4 N as crawler threads
B "Back” e \Web-scale issues
Queues
A RA A\ . e
——, s ® This won't fitin memory

Back Queue Selector Timing Heap .
W—;J e Solution
@ @ @ e Keep queues on disk and

keep a portion in memory.

URL Frontier Implementation e
Mercator - walk through the process

l

I Prioritizer |

F "Front"
Queues

%

oy oy
—.
Front Queue Selector

—

Back Queue Router Host to Back Queue
ﬁ Mappmg Table

1 2 B

¥ __

B "Back"
Queues

%
1
&

i

Back Queue Selector Timing Heap

@ @ http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf

e

Overview

® |Introduction

® URL Frontier
® Robust Crawling

® DNS

® Various parts of architecture

® URL Frontier

® |ndex
® Distributed Indices

® Connectivity Servers

The index

® Why does the crawling architecture exists?
® To gather information from web pages (aka documents).
® What information are we collecting?
® Keywords
® Mapping documents to a “bags of words” (aka vector
space model)
® Links
® Where does a document link to?

® \Who links to a document?

STMONT COMPUTER SCIENC

