
Web Crawling
Introduction to 
Information Retrieval

CS 150

Donald J. Patterson

Content adapted from Hinrich Schütze

http://www.informationretrieval.org

http://www.informationretrieval.org


A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Processing Steps in Crawling
• Pick a URL from the frontier (how to prioritize?)


• Fetch the document (DNS lookup)


• Parse the URL


• Extract Links


• Check for duplicate content


• If not add to index


• For each extracted link


• Make sure it passes filter (robots.txt)


• Make sure it isn’t in the URL frontier

Robust Crawling



Domain Name Server
• A lookup service on the internet


• Given a URL, retrieve its IP address


• www.djp3.net -> 45.79.205.40


• This service is provided by a distributed set of servers


• Latency can be high


• Even seconds

DNS

http://www.djp3.net


Domain Name Server

• Common OS implementations of DNS lookup are blocking


• One request at a time


• Solution:


• Caching


• Batch requests


• Custom resolvers

DNS



Domain Name Server

DNS dig +trace www.djp3.net

Root Name 
Server

.net
Name 
Server

djp3.net
Name 
Server

Where is www.djp3.net?

Ask 192.5.6.30

{A}.ROOT-SERVERS.NET = 198.41.0.4

{A}.GTLD-SERVERS.net = 192.5.6.30

Ask 72.1.140.145

{ns1}.speakeasy.net =72.1.140.145

Use 69.17.116.124

Give me a web page

www.djp3.net = 69.17.116.124

1

2

3

4



DNS What really happens

Give me a www.djp3.net

flickr:crankyT

The User

Firefox DNS 
cache

OS DNS 
Resolver

OS DNS 
Cache

OS specified DNS Server
ns1.ics.uci.edu

DNS Cache

Host table
Client

Name Server



Class Exercise
• Calculate how long it would take to completely fill a DNS 

cache.


• How many active hosts are there?


• What is an average lookup time?


• Do the math.

DNS

http://www.flickr.com/photos/lurie/298967218/

http://www.informationretrieval.org






Public DNS Servers

http://www.flickr.com/photos/lurie/298967218/

• Why run a DNS lookup 

service? 

• It’s your administrative 

domain 

• A public good 

• It helps your other business 

• You can make money on bad 

queries 

• Mobile servers need special 

attention

http://www.informationretrieval.org


A Robust Crawl Architecture

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Parsing: URL normalization
• When a fetched document is parsed


• some outlink URLs are relative 

• For example:


• http://en.wikipedia.org/wiki/Main_Page


• has a link to “/wiki/Special:Statistics”


• which is the same as


• http://en.wikipedia.org/wiki/Special:Statistics


• Parsing involves normalizing (expanding) relative URLs

Parsing

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Special:Statistics


Parsing: URL normalization
• When a fetched document is parsed


• some outlink URLs are protocol-relative 

• For example:


• http://www.starbucks.com/


• has a “<script src=“//cdn.optimizely.com/js/6558036.js"></script>"


• which matches the protocol used to load it


• “http:” or “https:” or “file:” //cdn.optimizely.com/js/6558036.js 

Parsing

http://www.starbucks.com/
http://cdn.optimizely.com/js/6558036.js


Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Content Seen?
• Duplication is widespread on the web


• If a page just fetched is already in the index, don’t process it 

any further


• This can be done by using document fingerprints/shingles


• A type of approximate hashing scheme


• Similar to watermarking, SIFT features, etc.

Duplication



• \

Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



Compliance with webmasters wishes...
• Robots.txt


• Filters is a regular expression for a URL to be excluded


• How often do you check robots.txt?


• Cache to avoid using bandwidth and loading web 

server


• Sitemaps


• A mechanism to better manage the URL frontier

Filters



Robust Crawling\

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue



• For a one-time crawl


• Test to see if an extracted,parsed, filtered URL


• has already been sent to the frontier.


• has already been indexed.


• For a continuous crawl


• See full frontier implementation:


• Update the URL’s priority


• Based on staleness


• Based on quality


• Based on politeness

Duplicate Elimination



• The key goal for the architecture of a distributed crawl is 

cache locality


• We want multiple crawl threads in multiple processes at 

multiple nodes for robustness


• Geographically distributed for speed


• Partition the hosts being crawled across nodes


• Hash typically used for partition


• How do the nodes communicate?

Distributing the crawl



Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue

Host 
Splitter

To Other Nodes

From Other 
Nodes

The output of the URL Filter at each node is sent to the Duplicate 
Eliminator at all other nodes



• Freshness


• Crawl some pages more often than others


• Keep track of change rate of sites


• Incorporate sitemap info


• Quality


• High quality pages should be prioritized


• Based on link-analysis, popularity, heuristics on content


• Politeness


• When was the last time you hit a server?

URL Frontier



• Freshness, Quality and Politeness


• These goals will conflict with each other


• A simple priority queue will fail because links are bursty


• Many sites have lots of links pointing to themselves 

creating bursty references


• Time influences the priority


• Politeness Challenges


• Even if only one thread is assigned to hit a particular host 

it can hit it repeatedly


• Heuristic : insert a time gap between successive requests

URL Frontier



• To fetch 1,000,000,000 pages in one month...


• a small fraction of the web


• we need to fetch 400 pages per second !


• Since many fetches will be duplicates, unfetchable, filtered, 

etc. 400 pages per second isn’t fast enough

Magnitude of the crawl



Overview
• Introduction


• URL Frontier


• Robust Crawling


• DNS


• Various parts of architecture


• URL Frontier


• Index


• Distributed Indices


• Connectivity Servers

Web Crawling Outline
\



Robust Crawling

WWW

DNS

Fetch

Parse

Seen?

Doc.
Finger-
prints

URL
Filter

Robots.txt

Duplicate 
Elimination

URL
Index

URL Frontier Queue

Host 
Splitter

To Other Nodes

From Other 
Nodes

The output of the URL Filter at each node is sent to the Duplicate 
Eliminator at all other nodes



• URLs flow from top to bottom


• Front queues manage priority


• Back queue manage politeness


• Each queue is FIFO

URL Frontier Implementation - Mercator 
Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf


• Prioritizer takes URLS and assigns a 

priority


• Integer between 1 and F


• Appends URL to appropriate 

queue


• Priority


• Based on rate of change


• Based on quality (spam)


• Based on application

URL Frontier Implementation - Mercator 

Prioritizer

F "Front" 

Queues

1 2 F

Front Queue Selector

Front queues



• Selection from front queues is 

initiated from back queues


• Pick a front queue, how?


• Round robin


• Randomly


• Monte Carlo


• Biased toward high priority

URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• Each back queue is non-empty 

while crawling 

• Each back queue has URLs from 

one host only 

• Maintain a table of URL to back 

queues (mapping) to help



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• Timing Heap 

• One entry per queue 

• Has earliest time that a host can 

be hit again 

• Earliest time based on 

• Last access to that host 

• Plus any appropriate heuristic 

• robots.txt “crawl-delay” 

• sitemaps instruction



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• A crawler thread needs a URL 

• It gets the timing heap root 

• It gets the next eligible queue 

based on time, b. 

• It gets a URL from b 

• If b is empty 

• Pull a URL v from front queue 

• If back queue for v exists place 

it in that queue, repeat. 

• Else add v to b - update heap.



URL Frontier Implementation - Mercator 
Back queues

B "Back" 
Queues

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

• How many queues? 

• Keep all threads busy 

• ~3 times as many back queues 

as crawler threads 

• Web-scale issues 

• This won’t fit in memory 

• Solution 

• Keep queues on disk and 

keep a portion in memory.



URL Frontier Implementation

Mercator - walk through the process 

\

Prioritizer

F "Front" 
Queues

1 2 F

B "Back" 
Queues

Front Queue Selector

Back Queue Router Host to Back Queue 
Mapping Table

1 2 B

Back Queue Selector Timing Heap

http://research.microsoft.com/~najork/mercator.pdf

http://research.microsoft.com/~najork/mercator.pdf


Overview
• Introduction


• URL Frontier


• Robust Crawling


• DNS


• Various parts of architecture


• URL Frontier


• Index


• Distributed Indices


• Connectivity Servers

Web Crawling Outline
\



The index
• Why does the crawling architecture exists?


• To gather information from web pages (aka documents).


• What information are we collecting?


• Keywords


• Mapping documents to a “bags of words” (aka vector 

space model)


• Links


• Where does a document link to?


• Who links to a document?

Indices




