
Index Construction
Introduction to
Information Retrieval

CS 150

Donald J. Patterson

Content adapted from Hinrich Schütze

http://www.informationretrieval.org

http://www.informationretrieval.org

Connectivity Server
• Abstract Matrix

• Pairs of URLs (From -> To)

• Pairs of DocIDs

• Template based compression

Review

Overview
• Introduction

• Hardware

• BSBI - Block sort-based indexing

• SPIMI - Single Pass in-memory indexing

• Distributed indexing

• Dynamic indexing

• Miscellaneous topics

Index Construction

 1 1998

 1 Every

 1 Her

 1 I

 1 I'm

 1 Jensen's

 2 Julie

 1 Letter

 1 Most

 1 all

 1 allegedly

 1 back

 1 before

 1 brings

 2 brothers

 1 could

 1 days

 1 dead

 1 death

 1 everything

 1 for

 1 from

 1 full

 1 happens

 1 haunts

 1 have

 1 hear

 3 her

 1 husband

 1 if

 1 it

 1 killing

 1 letter

 1 nothing

 1 now

 1 of

 1 pray

 1 read,

 1 saved

 1 sister

 1 stands

 1 story

 1 the

 2 they

 1 time

 1 trial

 1 wonder

 1 wrong

 1 wrote

1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

Introduction
The index has a list of vector space models

“Term-Document Matrix” Capture Keywords

1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 3

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 1

A Column for Each Web Page (or “Document”)

A
 R

o
w

 F
o

r
E
a

c
h

 W
o

rd
 (

o
r

“
Te

rm
”
)

...........

1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 3
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 1
 1

 2
 1

 1
 1

 1
 1

 1
 1

 1
 2

 1
 1

 1
 1

 2

0
 0

 0
 1

 1
 4

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 1
 1

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 0
 1

 1
 1

 2

• This picture is deceptive

it is really very sparse

• Our queries are terms -

not documents

• We need to “invert” the

vector space model

• To make “postings”

Introduction

Terms
• Inverted index

• (Term, Document) pairs

• building blocks for working with Term-Document Matrices

• Index construction (or indexing)

• The process of building an inverted index from a corpus

• Indexer

• The system architecture and algorithm that constructs the

index

Introduction

The index is built from term-document pairs
(TERM,DOCUMENT)

(1998,www.cnn.com)
(Every,www.cnn.com)
(Her,www.cnn.com)
(I,www.cnn.com)
(I'm,www.cnn.com)
(Jensen's,www.cnn.com)
(Julie,www.cnn.com)
(Letter,www.cnn.com)
(Most,www.cnn.com)
(all,www.cnn.com)
(allegedly,www.cnn.com)
(back,www.cnn.com)
(before,www.cnn.com)
(brings,www.cnn.com)
(brothers,www.cnn.com)
(could,www.cnn.com)
(days,www.cnn.com)
(dead,www.cnn.com)
(death,www.cnn.com)
(everything,www.cnn.com)
(for,www.cnn.com)
(from,www.cnn.com)
(full,www.cnn.com)
(happens,www.cnn.com)
(haunts,www.cnn.com)

(have,www.cnn.com)
(hear,www.cnn.com)
(her,www.cnn.com)
(husband,www.cnn.com)
(if,www.cnn.com)
(it,www.cnn.com)
(killing,www.cnn.com)
(letter,www.cnn.com)
(nothing,www.cnn.com)
(now,www.cnn.com)
(of,www.cnn.com)
(pray,www.cnn.com)
(read,,www.cnn.com)
(saved,www.cnn.com)
(sister,www.cnn.com)
(stands,www.cnn.com)
(story,www.cnn.com)
(the,www.cnn.com)
(they,www.cnn.com)
(time,www.cnn.com)
(trial,www.cnn.com)
(wonder,www.cnn.com)
(wrong,www.cnn.com)
(wrote,www.cnn.com)

Introduction

Introduction
The index is built from term-document pairs

(TERM,DOCUMENT)

(1998,www.cnn.com)
(Every,www.cnn.com)
(Her,www.cnn.com)
(I,www.cnn.com)
(I'm,www.cnn.com)
(Jensen's,www.cnn.com)
(Julie,www.cnn.com)
(Letter,www.cnn.com)
(Most,www.cnn.com)
(all,www.cnn.com)
(allegedly,www.cnn.com)
(back,www.cnn.com)
(before,www.cnn.com)
(brings,www.cnn.com)
(brothers,www.cnn.com)
(could,www.cnn.com)
(days,www.cnn.com)
(dead,www.cnn.com)
(death,www.cnn.com)
(everything,www.cnn.com)
(for,www.cnn.com)
(from,www.cnn.com)
(full,www.cnn.com)
(happens,www.cnn.com)
(haunts,www.cnn.com)

(have,www.cnn.com)
(hear,www.cnn.com)
(her,www.cnn.com)
(husband,www.cnn.com)
(if,www.cnn.com)
(it,www.cnn.com)
(killing,www.cnn.com)
(letter,www.cnn.com)
(nothing,www.cnn.com)
(now,www.cnn.com)
(of,www.cnn.com)
(pray,www.cnn.com)
(read,,www.cnn.com)
(saved,www.cnn.com)
(sister,www.cnn.com)
(stands,www.cnn.com)
(story,www.cnn.com)
(the,www.cnn.com)
(they,www.cnn.com)
(time,www.cnn.com)
(trial,www.cnn.com)
(wonder,www.cnn.com)
(wrong,www.cnn.com)
(wrote,www.cnn.com)

• Core indexing step is to

sort by terms

Term-document pairs make lists of postings

(TERM,DOCUMENT, DOCUMENT, DOCUMENT,)
(1998,www.cnn.com,news.google.com,news.bbc.co.uk)
(Every,www.cnn.com, news.bbc.co.uk)
(Her,www.cnn.com,news.google.com)
(I,www.cnn.com,www.weather.com,)
(I'm,www.cnn.com,www.wallstreetjournal.com)
(Jensen's,www.cnn.com)
(Julie,www.cnn.com)
(Letter,www.cnn.com)
(Most,www.cnn.com)
(all,www.cnn.com)
(allegedly,www.cnn.com)

Introduction

• A posting is a list of all

documents in which a

term occurs.

• This is “inverted“ from

how documents

naturally occur

Terms
• How do we construct an index?

Introduction

Interactions
• An indexer needs raw text

• We need crawlers to get the documents

• We need APIs to get the documents from data stores

• We need parsers (HTML, PDF, PowerPoint, etc.) to convert

the documents

• Indexing the web means this has to be done web-scale

Introduction

Construction
• Index construction in main memory is simple and fast.

• But:

• As we build the index we parse docs one at a time

• Final postings for a term are incomplete until the end.

• At 10-12 postings per term, large collections demand a lot

of space

• Intermediate results must be stored on disk

Introduction

Overview
• Introduction

• Hardware

• BSBI - Block sort-based indexing

• SPIMI - Single Pass in-memory indexing

• Distributed indexing

• Dynamic indexing

• Miscellaneous topics

Index Construction

System Parameters
• Disk seek time = 0.005 sec (2014: 0.004 hp - 0.015

mobile)

• Transfer time per byte = 0.00000002 sec

• Processor clock rate = 0.00000001 sec

• Size of main memory = several GB

• Size of disk space = several TB

Hardware in 2007 (hasn’t changed much through 2014)

http://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics

http://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics

System Parameters
• Data is transferred from disk in blocks

• Operating Systems read data in blocks, so

• Reading one byte and reading one block take the same

amount of time

Hardware in 2007 (hasn’t changed much through 2014)

System Parameters
• Disk Seek Time

• The amount of time to get the disk head to the data

• About 10 times slower than memory access

• We must utilize caching

• No data is transferred during seek

• Data is transferred from disk in blocks

• There is no additional overhead to read in an entire block

• How long would it take to get 10 MB if it is one block?

• How long would it take to get 10 MB if it is stored in

100 blocks?

Hardware in 2007 (hasn’t changed much through 2014)

System Parameters
• Disk Seek Time

• The amount of time to get the disk head to the data

• About 10 times slower than memory access

• We must utilize caching

• No data is transferred during seek

• Data is transferred from disk in blocks

• There is no additional overhead to read in an entire block

• 0.2098 seconds to get 10 MB if it is one block

• 0.7048 seconds to get 10 MB if it is stored in 100

blocks

Hardware in 2007 (hasn’t changed much through 2014)

Solving data recovery time

System Parameters
• What about compressed disks?

Hardware in 2007 (hasn’t changed much through 2014)

System Parameters
• Data transfers are done on the system bus, not by the

processor

• The processor is not used during disk I/O

• Assuming an efficient decompression algorithm

• The total time of reading and then decompressing

compressed data is usually less than reading

uncompressed data.

Hardware

Compressed Data on Disk

System Parameters
• What about SSDs?

Hardware in 2007 (hasn’t changed much through 2014)

Overview
• Introduction

• Hardware

• BSBI - Block sort-based indexing

• SPIMI - Single Pass in-memory indexing

• Distributed indexing

• Dynamic indexing

• Miscellaneous topics

Index Construction

Reuters collection example (approximate #’s)
• 800,000 documents from the Reuters news feed

• 200 terms per document

• 400,000 unique terms

• number of postings 100,000,000

BSBI

Reuters collection example (approximate #’s)
• Sorting 100,000,000 records on disk is too slow because of

disk seek time.

• Parse and build posting entries one at a time

• Sort posting entries by term

• Then by document in each term

• Doing this with random disk seeks is too slow

• e.g. If every comparison takes 2 disk seeks and N items

need to be sorted with N log2(N) comparisons?

• How long is that going to take?

BSBI

Reuters collection example (approximate #’s)
• 100,000,000 records

• Nlog2(N) is = 2,657,542,475.91 comparisons

• 2 disk seeks per comparison = 13,287,712.38 seconds x 2

• = 26,575,424.76 seconds

• = 442,923.75 minutes

• = 7,382.06 hours

• = 307.59 days

• = 84% of a year

• = 1% of your life

2black.wordpress.com

BSBI

Prof. Patterson waiting for your slow algorithm to end

http://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics
http://2black.wordpress.com/2008/01/25/old-man-with-the-grey-beard-in-the-dark/

Review
• termID is an index given to a vocabulary word

• e.g., “house” = 57820

• docID is an index given to a document

• e.g., “news.bbc.co.uk” = 74291

• posting list is a data structure for the term-document matrix

• posting list is an inverted data structure

Index Construction

Term DocID DocID DocID DocID

Different way to sort index
• 12-byte records (term, doc, meta-data)

• Need to sort T= 100,000,000 such 12-byte records by term

• Define a block to have 1,600,000 such records

• can easily fit a couple blocks in memory

• we will be working with 64 such blocks

• Accumulate postings for each block (real blocks are bigger)

• Sort each block

• Write to disk

• Then merge

BSBI - Block sort-based indexing

Crawl
System

(1998, www.cnn.com)
(every, www.cnn.com)

(I, www.cnn.com)
(Jensen's, www.cnn.com)

(kite, www.hobby.com)

(1998, www.hobby.com)
(her, news.bbc.co.uk)

(I, news.bbc.co.uk)
(lion, news.bbc.co.uk)

(zebra, news.bbc.co.uk)

Disk

Block that fits in memory Block that fits in memory

BSBI - Block sort-based indexing
Different way to sort index

(1998, www.cnn.com, www.hobby.com)
(every, www.cnn.com)
(her, news.bbc.co.uk)

(I, www.cnn.com, news.bbc.co.uk
(Jensen's, www.cnn.com)

(kite, www.hobby.com)
(lion, news.bbc.co.uk)

(zebra, news.bbc.co.uk)

Merged Postings

(1998, www.cnn.com)
(every, www.cnn.com)

(I, www.cnn.com)
(Jensen's, www.cnn.com)

(kite, www.hobby.com)

(1998, www.hobby.com)
(her, news.bbc.co.uk)

(I, news.bbc.co.uk)
(lion, news.bbc.co.uk)

(zebra, news.bbc.co.uk)

.......

Different way to sort index
BSBI - Block sort-based indexing

BlockSortBasedIndexConstruction()
1 n� 0
2 while (all documents not processed)
3 do block � ParseNextBlock()
4 BSBI-Invert(block)
5 WriteBlockToDisk(block, fn)
6 MergeBlocks(f1, f2..., fn, fmerged)

BSBI - Block sort-based indexing

Block merge indexing
• Parse documents into (TermID, DocID) pairs until “block” is full

• Invert the block

• Sort the (TermID,DocID) pairs

• Compile into TermID posting lists

• Write the block to disk

• Then merge all blocks into one large postings file

• Need 2 copies of the data on disk (input then output)

BSBI - Block sort-based indexing

Analysis of BSBI
• The dominant term is O(TlogT)

• T is the number of (TermID,DocID) pairs

• But in practice ParseNextBlock takes the most time

• Then MergingBlocks

• Again, disk seeks times versus memory access times

BSBI - Block sort-based indexing

Analysis of BSBI
• 12-byte records (term, doc, meta-data)

• Need to sort T= 100,000,000 such 12-byte records by term

• Define a block to have 1,600,000 such records

• can easily fit a couple blocks in memory

• we will be working with 64 such blocks

• 64 blocks * 1,600,000 records * 12 bytes = 1,228,800,000

bytes

• Nlog2N comparisons is 5,584,577,250.93

• 2 touches per comparison at memory speeds (10e-6 sec) =

• 55,845.77 seconds = 930.76 min = 15.5 hours

BSBI - Block sort-based indexing

