
Deconstructing Wikipedia vs. Project Gutenberg

QUERYING
Introduction to
Information Retrieval
CS 150
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

OVERVIEW
• Boolean Retrieval

• Weighted Boolean Retrieval

• Zone Indices

• Term Frequency Metrics

• The full vector space model

QUERYING

FROM THE BOTTOM
• “Grep”

• Querying without an index or a crawl

• Whenever you want to find something you look

through the entire document for it.

• Example:

• You have the collected works of Shakespeare on

disk

• You want to know which play contains the words

• “Brutus AND Caesar”

QUERYING

FROM THE BOTTOM
• “Grep”

• “Brutus AND Caesar” is the query.

• This is a boolean query. Why?

• What other operators could be used?

• The grep solution:

• Read all the files and all the text and output the

intersection of the files

QUERYING

FROM THE BOTTOM
• “Grep”

• Slow for large corpora

• Calculating “NOT” requires exhaustive scanning

• Some operations not feasible

• Query: “Romans NEAR Countrymen”

• Doesn’t support ranked retrieval

• Moving beyond grep is the motivation for the inverted

index.

QUERYING

OVERVIEW
• Boolean Retrieval

• Weighted Boolean Retrieval

• Zone Indices

• Term Frequency Metrics

• The full vector space model

QUERYING

Our inverted index is a 2-D array or Matrix

A
 R

ow
 f
or

 E
a
ch

 W
or

d
 (
or

 “
T
er

m
”)

A Column For Each Document

QUERYING

BOOLEAN RETRIEVAL

• Boolean Query

• Queries are boolean expressions

• Search returns all documents which satisfy the

expression

• Does Google use the Boolean model?

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Straightforward application of inverted index

• where cells of inverted index are (0,1)

• indicating presence or absence of a term

T
er

m

Document

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• 0/1 vector for each term

• “Brutus AND Caesar AND NOT Calpurnia =

• Perform bitwise Boolean operation on each row:

• 110100 AND 110111 AND !(010000) = 100100

T
er

m

Document

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• A big corpus means a sparse matrix

• A sparse matrix motivates the introduction of the posting

• Much less space to store

• Only recording the “1” positions

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Query processing on postings

• Brutus AND Caesar

• Locate the postings for Brutus

• Locate the postings for Caesar

• Merge the postings

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• Merging -> walk through the two posting simultaneously

• postings sorted by doc ID

Brutus 2 4 8 16 32 64

Caesar 1 2 3 5 8 13

2 8

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query

• An algorithm based on postings

• Linear in the size of the postings
Intersect(p1, p2)

1 answer �<>
2 while p1 ⇥= nil and p2 ⇥= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 � next(p1)
6 p2 � next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 � next(p1)
9 else p2 � next(p2)

10 return answer

BOOLEAN RETRIEVAL

QUERYING

• Boolean Query
• Is the algorithmic complexity better than scanning?
• Where would you put more complex formulae?

Intersect(p1, p2)
1 answer �<>
2 while p1 ⇥= nil and p2 ⇥= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer, docID(p1))
5 p1 � next(p1)
6 p2 � next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 � next(p1)
9 else p2 � next(p2)

10 return answer

BOOLEAN RETRIEVAL

QUERYING

• Boolean Queries

• Exact match

• Views each document as a “bag of words”

• Precise: a document matches or it doesn’t

• Primary commercial retrieval tool for 3 decades

• Professional searchers (e.g., lawyers) still like

Boolean queries

• Why?

• No question about what you are getting

BOOLEAN RETRIEVAL

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Deconstruct what is happening here:

• http://www.rhymezone.com/shakespeare/

QUERYING

http://www.rhymezone.com/shakespeare/

BOOLEAN MODEL VS. RANKED RETRIEVAL
METHODS

• Only game for 30 years

• uses precise queries

• user decides relevance

• stayed current with

proximity queries

• precise controlled queries

• transparent queries

• controlled queries

• Appeared with www

• uses “free-text” queries

• system decides relevance

• works with enormous

corpora

• “no guarantees” in queries

QUERYING

WESTLAW CASE STUDY
• Largest commercial (paying subscribers) legal search

service (started in 1975, ranking added in 1992)

• Tens of terabytes of data, 700,000 users

• Majority of users still use boolean queries (default in 2005)

• Example:

• What is the statute of limitations in cases involving

federal tort claims act?

• LIMIT! /3 STATUTE ACT /S FEDERAL /2 TORT /3

CLAIM

• /3 = within 3 words. /S same sentence

QUERYING - BOOLEAN SEARCH EXAMPLE

WESTLAW CASE STUDY
• Example:

• Requirements for disabled people to be able to access

a workplace

• disabl! /p access! /s work-site work-place

employment /3 place

• space is a disjunction not a conjunction

• long precise queries, proximity operators,

incrementally developed, not like web search

• preferred by professionals, but not necessarily better

QUERYING - BOOLEAN SEARCH EXAMPLE

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

QUERYING

RANKED SEARCH
• Rather than saying

• (query, document) matches or not (0,1)

• (“Capulet”,”Romeo and Juliet”) = 1

• Now we are going to assign rankings

• (query, document) in {0,1}

• (“capulet”,”Romeo and Juliet”) = 0.7

QUERYING

METADATA
• “structured additional information about a document.”

• The author of a document

• The creation date of a document

• The title of a document

• The location where a document was created

• author, creation date, title, location are fields

• searching for “William Shakespeare” in a doc differs from

searching for “William Shakespeare” in the author of a doc

QUERYING

PARAMETRIC SEARCH
• supports searching on meta-data explicitly

• a parametric search interface allows a mix of full-text

query and meta-data queries

• Example:

• http://carsquare.com/

QUERYING

http://carsquare.com/

PARAMETRIC SEARCH
• Result is a large table

• Columns are fields

• Searching for “Lamborghini” only applied to make/model field

QUERYING

PARAMETRIC SEARCH
• Example:

• http://www.ocregister.com/realestate/

QUERYING

http://www.ocregister.com/realestate/

PARAMETRIC SEARCH
• Example:

• http://www.ocregister.com/realestate/

• 92614: 218 results

QUERYING

http://www.ocregister.com/realestate/

PARAMETRIC SEARCH
• Example:

• http://www.ocregister.com/realestate/

• 92614: 218 results

QUERYING

http://www.ocregister.com/realestate/

PARAMETRIC SEARCH
• In these examples we select field values

• Values could be hierarchical

• USA -> California -> SB County -> Montecito

• It is a paradigm for navigating through a corpus

• e.g, “Aerospace companies in Brazil” can be found by

combining “Geography” and “Industry”

• Approach:

• Filter for relevant documents

• Run text searches on subset

QUERYING

• Index support for parametric search

• Must be able to support queries of the form:

• Find pdf documents that contain “Westmont”

• Field selection and text query

• Field selection approach

• Use inverted index of field values

• (field value, docID)

• organized by field name

• Using same compression and sorting techniques

PARAMETRIC SEARCH

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

QUERYING

• A zone is an extension of a field

• A zone is an identified region of a document

• e.g., title, abstract, bibliography

• Generally identified by mark-up in a document

• <title>Romeo and Juliet</title>

• Contents of zone are free text

• Not a finite vocabulary

• Indices required for each zone to enable queries like:

• (instant in TITLE) AND (oatmeal in BODY)

• Doesn’t cover “all papers whose authors cite themselves”

• Why?

ZONES

QUERYING

• Now, we crawl the corpus

• We parse the document keeping track of terms, fields

and docIDs

• Instead of building just a (term, docID) pair

• We build (term, field, docID) triples

• These can then be combined into postings like this:

William.author 2 4 8 16 32 64

William.title 1 2 3 5 8 13

William.abstract 1 3 5 7 9 11

PARAMETRIC/ZONE SEARCH

QUERYING

• So are we just creating a database?

• Not really.

• Databases have more functionality

• Transactions

• Recovery

• Our index can be recreated. Not so with database.

• Text is never stored outside of indices

• We are focusing on optimized indices for text-oriented

queries not a full SQL engine

PARAMETRIC/ZONE SEARCH

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

QUERYING

