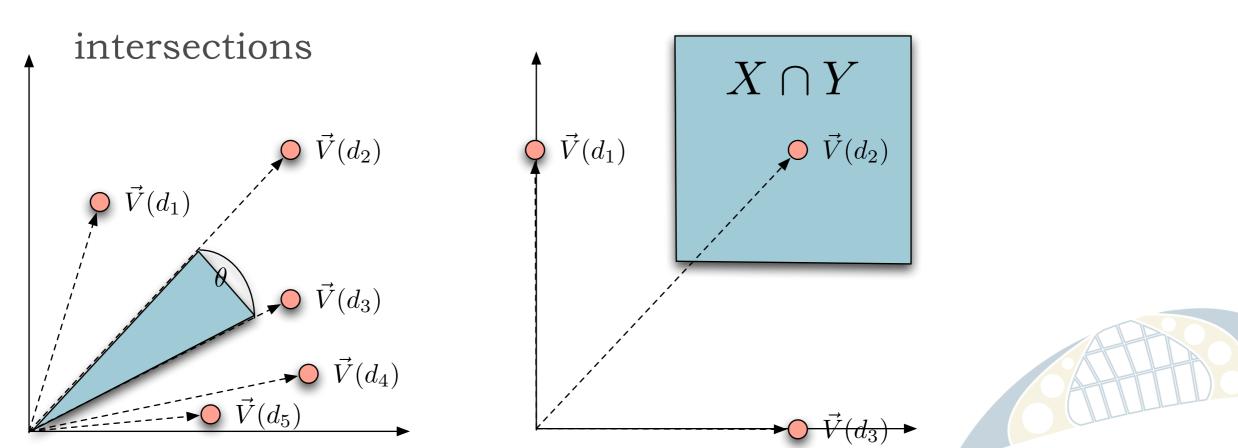
Introduction to Information Retrieval CS 150 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

VECTOR SPACE SCORING VECTORS AND BOOLEAN QUERIES

- Ranked queries and Boolean queries don't work very well together
 - In term space
 - ranked queries select based on sector containment cosine similarity
 - boolean queries select based on rectangle unions and



VECTORS AND WILD CARDS

- How could we work with the query, "quick* print*"?
 - Can we view this as a bag of words?
 - What about expanding each wild-card into the matching set of dictionary terms?
- Danger: Unlike the boolean case, we now have tfs and idfs to deal with
- Overall, not a great idea

VECTORS AND OTHER OPERATORS

- Vector space queries are good for no-syntax, bag-ofwords queries
 - Nice mathematical formalism
 - Clear metaphor for similar document queries
 - Doesn't work well with Boolean, wild-card or positional query operators
 - But ...

QUERY LANGUAGE VS. SCORING

- Interfaces to the rescue
 - Free text queries are often separated from operator query language
 - Default is free text query
 - Advanced query operators are available in "advanced query" section of interface
 - Or embedded in free text query with special syntax
 - aka -term -"terma termb"

ALTERNATIVES TO TF-IDF

- Sublinear tf scaling
 - 20 occurrences of "mole" does not indicate 20 times the relevance
 - This motivated the WTF score.
 - WTF(t,d)1 **if** $tf_{t,d} = 0$
 - 2 then return(0)
 - 3 else $return(1 + log(tf_{t,d}))$
 - There are other variants for reducing the impact of repeated terms

TF NORMALIZATION

• Normalize tf weights by maximum tf in that document

$$ntf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)}$$

- alpha is a smoothing term from (0 1.0) ~0.4 in practice
- This addresses a length bias.
- Take one document, repeat it, WTF goes up
 - this score reduces that impact

TF NORMALIZATION

• Normalize tf weights by maximum tf in that document

$$ntf_{t,d} = \alpha + (1 - \alpha) \frac{tf_{t,d}}{tf_{max}(d)}$$

- a change in the stop word list can change weights drastically hard to tune
- still based on bag of words model
 - one outlier word, repeated many times might throw off the algorithmic understanding of the content

VECTOR SPACE SCORING LAUNDRY LIST

Term Frequency		Document Frequency		Normalization	
(n)atural	$tf_{t,d}$	(n)o	1	(n)one	1
(l) ogarithm	$1 + log(tf_{t,d})$	(t)idf	$log rac{ corpus }{df_t}$	(c)osine	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_m^2}}$
(a) ugmented	$\alpha + (1 - \alpha) \frac{t f_{t,d}}{t f_{max}(d)}$	(p)robidf	$max\{0, log(\frac{ corpus - dft}{df_t})\}$	(u) pivoted	1/u
(b)oolean	$tf_{t,d} > 0?1:0$			(b)yte	$1/CharLength^{\alpha}, \alpha < 1$
(L) ogaverage	$\frac{1 + log(tf_{t,d})}{1 + log(ave_{t \in d}(tf_{t,d}))}$				

- SMART system of describing your IR vector algorithm
 - ddd.qqq (ddd = document weighting) (qqq = query weighting)
 - first is term weighting, second is document, then normalization
 - ltc.ltc is what?

EFFICIENT COSINE RANKING

- Find the k docs in the corpus "nearest" to the query
 - the k largest query-doc cosines
- Efficient ranking means:
 - Computing a single cosine efficiently
 - Computing the k largest cosine values efficiently
 - Can we do this without computing all n cosines?
 - n = number of documents in corpus

EFFICIENT COSINE RANKING

- Computing a single cosine
 - Use inverted index
 - At query time use an array of accumulators Aj to accumulate component-wise sum (incremental dot-product)
 - Accumulate scores as postings lists are being processed (numerator of similarity score)

$$A_j = \sum_t (w_{q,t} w_{d,t})$$

EFFICIENT COSINE RANKING

- For the web
 - an array of accumulators in memory is infeasible
 - so only create accumulators for docs that occur in postings list
 - dynamically create accumulators
 - put the tfidf scores in the postings lists themselves
 - limit docs to non-zero cosines on rare words
 - or non-zero cosines on all words
 - reduces number of accumulators

EFFICIENT COSINE RANKING

COSINESCORE(q)INITIALIZE($Scores[d \in D]$) 1 INITIALIZE($Magnitude[d \in D]$) $\mathbf{2}$ 3 for each $term(t \in q)$ **do** $p \leftarrow \text{FetchPostingsList}(t)$ 4 $df_t \leftarrow \text{GetCorpusWideStats}(p)$ 5 6 $\alpha_{t,q} \leftarrow \text{WEIGHTINQUERY}(t, q, df_t)$ for each $\{d, tf_{t,d}\} \in p$ 7 **do** $Scores[d] + = \alpha_{t,q} \cdot WEIGHTINDOCUMENT(t, q, df_t)$ 8 9 for $d \in Scores$ **do** NORMALIZE(Scores[d], Magnitude[d]) 10 11 return top $K \in Scores$

USE HEAP FOR SELECTING THE TOP K SCORES

- Binary tree in which each node's value > the values of children
- Takes 2N operations to construct
 - then each of k "winners" read off in 2logn steps
 - For n =1M, k=100 this is about 10% of the cost of sorting
- Java "TreeMap" for example

