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Draw a graph with 10 nodes 

1) such that 1 node clearly has the highest PageRank 
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Draw a graph with 10 nodes 

2) such that 4 nodes have very high and equal PageRank 
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Draw a graph with 10 nodes 

3) such that no node has the same PageRank 
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How could PageRank be calculated in Hadoop? 
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PageRank with MapReduce

• PageRank is iterative 

• MapReduce is not 

• This solution describes how to do one iteration of 

PageRank using MapReduce 

• Multiple iterations would be required to converge



PageRank with MapReduce

• Quick review of PageRank 

• PageRank determines which pages are well-connected 

• A connection is a social signal that a web page is important 

• A connection is a vote for importance 

• Connections take time to form 

• Not so good for real-time data 

• Mathematically this is a Markov Chain



PageRank with MapReduce

• Quick review of PageRank 

• A Markov Chain 

• Has a starting probability 

• Has a set of states 

• Has transition probabilities 

• The web forms a graph which can be treated like a 

Markov Chain 

• If the Markov Chain is ergodic, then PageRank converges 
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PageRank with MapReduce

P1 = P0A

PageRank = lim
n!1

(Pn)



PageRank with MapReduce

• Assumptions 

• Initial probability is uniform 

• A transition is made up of 

• outlinks 

• deadend teleports 

• random teleports 

• a mixing constant 
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PageRank with MapReduce

• Map 

• Input is 

• key: page id,  

• value: [    , set of outlinked pages     ] 

• One output for every page  

• key: page id, 

• value: 

• if 

• if  

• if
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PageRank with MapReduce

fO(i, j) =
1

|Oi|

fD(i, j) =
1
n

fT (i, j) =
1
n

• Outlink probability 

• uniform 

• When you hit a deadend 

• jump to a random page uniformly 

• When you teleport 

• teleport to a random page uniformly 

• More sophisticated extensions are imaginable



PageRank with MapReduce

• Reduce collects the probabilities and adds them 

• Input is 

• key: page id,  

• value: probability of 

• Output is 

• key: page id, 

• value: sum of all input probabilities
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PageRank with MapReduce

• Summary 

• Each step of PageRank computes one iteration of 

• Each Map job handles the probability mass of one page 

being split across many pages 

• Each Reduce job collects the probabilities of one page 

coming from many pages

Pn+1 = PnA



input: node_a:[ P(node_a), [node_b,node_c] ] 

map out: [node_b, P(node_a)/2] 
    [node_c, P(node_a)/2] 
    [node_a,[node_b,node_c]] 
reduce in: 
   node_x: [P(in1),…,P(in3)….[node_y,node_z]] 

reduce out: 
   node_x: [sum(P(in1)…P(in3)),[node_y,node_z] ] 
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