
LINK ANALYSIS
Introduction to Information
Retrieval
CS 150
Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal
Jones and Bartlett Learning

Draw a graph with 10 nodes

1) such that 1 node clearly has the highest PageRank

Link Analysis - Exercises

Link Analysis - Exercises

Draw a graph with 10 nodes

2) such that 4 nodes have very high and equal PageRank

Link Analysis - Exercises

Link Analysis - Exercises

Draw a graph with 10 nodes

3) such that no node has the same PageRank

Link Analysis - Exercises

Link Analysis - Exercises

How could PageRank be calculated in Hadoop?

Link Analysis - Exercises

PageRank with MapReduce

• PageRank is iterative

• MapReduce is not

• This solution describes how to do one iteration of

PageRank using MapReduce

• Multiple iterations would be required to converge

PageRank with MapReduce

• Quick review of PageRank

• PageRank determines which pages are well-connected

• A connection is a social signal that a web page is important

• A connection is a vote for importance

• Connections take time to form

• Not so good for real-time data

• Mathematically this is a Markov Chain

PageRank with MapReduce

• Quick review of PageRank

• A Markov Chain

• Has a starting probability

• Has a set of states

• Has transition probabilities

• The web forms a graph which can be treated like a

Markov Chain

• If the Markov Chain is ergodic, then PageRank converges

PageRank with MapReduce

• Quick review of PageRank

• A Markov Chain

• Has a starting probability

• Has a set of states

• Has transition probabilities

• The web forms a graph which can be treated like a

Markov Chain

• If the Markov Chain is ergodic, then PageRank converges

P0

N

Aij

PageRank with MapReduce

P1 = P0A

PageRank = lim
n!1

(Pn)

PageRank with MapReduce

• Assumptions

• Initial probability is uniform

• A transition is made up of

• outlinks

• deadend teleports

• random teleports

• a mixing constant

D

Aij = ↵O + ↵D + (1� ↵)T

O

T

0 <= ↵ <= 1

PageRank with MapReduce

• Assumptions

• Initial probability is uniform

• A transition is made up of

• outlinks

• deadend teleports

• random teleports

• a mixing constant

D

Aij = ↵O + ↵D + (1� ↵)T

O

T

0 <= ↵ <= 1

PageRank with MapReduce

• Map

• Input is

• key: page id,

• value: [, set of outlinked pages]

• One output for every page

• key: page id,

• value:

• if

• if

• if

i

pi Oi

j 2 (1..n)

j

pi(↵
1

|Oi|
+ (1� ↵)

1
n

)

(j 2 Oi)
(j /2 Oi)

(↵fO(i, j) + (1� ↵)fT (i, j))pi

(Oi == {}) (↵fD(i, j) + (1� ↵)fT (i, j))pi

(↵(0) + (1� ↵)fT (i, j))pi

PageRank with MapReduce

fO(i, j) =
1

|Oi|

fD(i, j) =
1
n

fT (i, j) =
1
n

• Outlink probability

• uniform

• When you hit a deadend

• jump to a random page uniformly

• When you teleport

• teleport to a random page uniformly

• More sophisticated extensions are imaginable

PageRank with MapReduce

• Reduce collects the probabilities and adds them

• Input is

• key: page id,

• value: probability of

• Output is

• key: page id,

• value: sum of all input probabilities

i

i

pi =
X

j

pjAji

j ! i

PageRank with MapReduce

• Summary

• Each step of PageRank computes one iteration of

• Each Map job handles the probability mass of one page

being split across many pages

• Each Reduce job collects the probabilities of one page

coming from many pages

Pn+1 = PnA

input: node_a:[P(node_a), [node_b,node_c]]

map out: [node_b, P(node_a)/2]
 [node_c, P(node_a)/2]
 [node_a,[node_b,node_c]]
reduce in:
 node_x: [P(in1),…,P(in3)….[node_y,node_z]]

reduce out:
 node_x: [sum(P(in1)…P(in3)),[node_y,node_z]]

Link Analysis - Exercises

