Chapter One: Introduction

A SHORT INTRODUCTION TO HARDWARE, SOFTWARE, AND ALGORITHM DEVELOPMENT

Chapter Goals

- In this chapter you will earn:
 - About computer hardware, software and programming
 - How to write and execute your first Python program
 - How to diagnose and fix programming errors
 - How to use pseudocode to describe an algorithm

Our First Definition

Algorithm:

• An *algorithm* is a step by step description of how to solve a problem.

The large collection of recipes *De re coquinaria*, conventionally entitled 'Apicius', appeared in the 4th or 5th century and is the only more or less complete surviving cookbook from the classical world. It lists the courses served in a meal as 'Gustatio' (appetizer), 'Primae Mensae' (main course) 'Secundae Mensae' (dessert).

Computer Programs

- A computer program tells a computer the sequence of steps needed to complete a specific task
 - The program consists of a very large number of primitive (simple) instructions
- Computers can carry out a wide range of tasks because they can execute different programs
 - Each program is designed to direct the computer to work on a specific task

Programming:

• The act of designing, implementing, and testing computer programs

Hardware and Software

THE BUILDING BLOCKS THAT MAKE UP A COMPUTER

Hardware

- *Hardware* consists of the physical elements in a computer system.
 - Some very visible examples are the monitor, the mouse, external storage, and the keyboard.
- The *central processing unit* (CPU) performs program control and data processing
- Storage devices include memory (RAM) and secondary storage
 - Hard disk
 - Flash drives
 - CD/DVD drives
- Input / output devices allow the user to interact with the computer
 - Mouse, keyboard, printer, screen...

Simple View of a Computer's Components

9/2/16

The CPU (aka "a core")

- The CPU has two components, the control unit and the arithmetic logic unit
- The *control unit* directs operation of the processor.
 - All computer resources are managed by the **control unit**.
 - It controls communication and co-ordination between input/output devices.
 - It reads and interprets instructions and determines the sequence for processing the data.
 - It provides timing and control signals
- The *arithmetic logic unit* contains the circuitry to perform calculations and do comparisons.
 - It is the workhorse portion of the computer and its job is to do precisely what the control unit tells it to do.

Intel[®] Core[™] i7-5960X Processor Die Map 22nm Tri-Gate 3-D Transistors

Transistor count: 2.6 Billior
Die size: 17.6mm x 20.2mn

*20MB of cache is shared across all 8 cores

nder Embargo until 00am PST, August 29, 2014 intel/

Look Ir

Storage

- There are two types of storage:
 - Primary Storage
 - Secondary Storage
- Primary storage is composed of memory chips: electronic circuits that can store data as long as it is provided electric power
- Secondary storage provides a slower, less expensive storage that is persistent: the data persists without electric power
- Computers store both data and programs
 - The data and program are located in secondary storage and loaded into memory when the program is executed

Memory

- A simple way to envision primary memory is a table of cells all the same size, one byte, and each containing a unique address beginning with 0.
 - The "typical" computer has a main memory ranging from 4 gigabytes (GB), to 32 GB.
- How big is a gigabyte?
 - A byte is 8 bits.
 - A kilobyte, KB, is 1024 bytes, or "about 1 thousand bytes."
 - A megabyte, MB, is 1,048,576 bytes, or "about 1 million bytes."
 - A *gigabyte*, GB, is 1,073,741,824 bytes or "about 1 billion bytes."

Executing a Program

- Program instructions and data (such as text, numbers, audio, or video) are stored in digital format
- When a program is started, it is brought into memory, where the CPU can read it.
- The CPU runs the program one instruction at a time.
 - The program may react to user input.
- The instructions and user input guide the program execution
 - The CPU reads data (including user input), modifies it, and writes it back to memory, the screen, or secondary storage.

Software

- Software is typically realized as an application program
 - Microsoft Word is an example of software
 - Computer Games are software
 - Operating systems and device drivers are also software
- Software
 - Software is a sequence of instructions and decisions implemented in some language and translated to a form that can be executed or run on the computer.
- Computers execute very basic instructions in rapid succession
 - The basic instructions can be grouped together to perform complex tasks
- Programming is the act of designing and implementing computer programs

Algorithms

Introduction to Algorithms

- If you want a computer to perform a task, you start by writing an algorithm
- An *Algorithm* is:
 - a sequence (the order mattering) of actions to take to accomplish the given task
 - An algorithm is like a recipe; it is a set of instructions written in a sequence that achieves a goal
- For complex problems software developers write an algorithm before they attempt to write a computer program
- For this class our goal is to ALWAYS write an algorithm for each project
- Developing algorithms is a fundamental problem solving skill
 - It has uses in many fields outside of Computer Science

Algorithm: Formal Definition

An *algorithm* describes a sequence of steps that is:

- 1. Unambiguous
 - a. No "assumptions" are required to execute the algorithm
 - b. The algorithm uses precise instructions
- 2. Executable
 - a. The algorithm can be carried out in practice
- 3. Terminating
 - a. The algorithm will eventually come to an end, or halt

Problem Solving: Algorithm Design

- Algorithms are simply plans
 - Detailed plans that describe the steps to solve a specific problem
- You already know quite a few
 - Calculate the area of a circle
 - Find the length of the hypotenuse of a triangle
- Some problems are more complex and require more steps
 - Calculate PI to 100 decimal places
 - Calculate the trajectory of a missile

A Simple Example

- A simple algorithm to get yourself a drink of orange juice
 - For simplicity, the following are true:
 - You have a clean glass in the cabinet
 - You have orange juice in your refrigerator
- So one valid algorithm is:
 - 1. get a glass from your cabinet
 - 2. go to the refrigerator and get the orange juice container
 - 3. open the orange juice container
 - 4. pour the orange juice from the container into the glass
 - 5. put the orange juice container back in the refrigerator
 - 6. drink your juice

Second Example: Selecting a Car

Problem Statement:

- You have the choice of buying two cars.
- One is more fuel efficient than the other, but also more expensive.
- You know the price and fuel efficiency (in miles per gallon, mpg) of both cars.
- You plan to keep the car for ten years.
- Which car is the better deal?

Developing the Algorithm

Determine the inputs and outputs

From the problem statement we know:

- Car 1: Purchase price, Fuel Efficiency
- Car 2: Purchase price, Fuel Efficiency
- Price per gallon = \$4.00
- Annual miles driven= 15,000
- Length of time = 10 years

For each car we need to calculate:

- Annual fuel consumed for each car
- Annual fuel cost for each car
- Operating cost for each car
- Total cost of each Car
- Then we select the car with the lowest total cost

Translating the Algorithm to pseudocode

- Break down the problem into smaller tasks
 - 'Calculate total cost' for each car
 - To calculate the total cost for each year we need to calculate the operating cost
 - The operating cost depends on the annual fuel cost
 - The annual fuel cost is the price per gallon * the annual fuel consumed
 - The annual fuel consumed is the annual miles drive / fuel efficiency
- Describe each subtask as pseudocode
 - total cost = purchase price + operating cost

The Psuedocode

For each Car, compute the total cost Annual fuel consumed = annual miles driven / fuel efficiency Annual fuel cost = price per gallon * annual fuel consumed Operating cost = Length of time * annual fuel cost Total cost = purchase price + operating cost

If total cost1 < total cost2 Chose Car1

Else

Choose Car2

Bank Account Example

- Problem Statement:
 - You put \$10,000 into a bank account that earns 5 percent interest per year. How many years does it take for the account balance to be double the original?
- How would you solve it?
 - Manual method
 - Make a table
 - Add lines until done
 - Use a spreadsheet!
 - Write a formula
 - Per line, based on line above

year	balance
0	10000
1	10000.00 x 1.05 = 10500.00
2	10500.00 x 1.05 = 11025.00
3	11025.00 x 1.05 = 11576.25
4	11576.25 x 1.05 = 12155.06

Develop the algorithm steps

- You put \$10,000 into a bank account that earns 5 percent interest per year. How many years does it take for the account balance to be double the original?
- Break it into steps
 - Start with a year value of 0 and a balance of \$10,000
 - Repeat the following while the balance is less than \$20,000
 - Add 1 to the year value
 - Multiply the balance by 1.05
 - (5% increase)
 - Report the final year value as the answer

year	balance
0	10000

year	balance
0	10000
1	10500
14	19799.32
15	20789.28

Translate to pseudocode

- Pseudocode
 - Half-way between natural language and a programming language
- Modified Steps
 - Set the year value of 0
 - Set the balance to \$10,000
 - While the balance is less than \$20,000
 - Add 1 to the year value
 - Multiply the balance by 1.05
 - Report the final year value as the answer
- The pseudocode is easily translated into Python

The Python Language

- In the early 1990's, Guido van Rossum designed what would become the Python programming language
- Van Rossum was dissatisfied with the languages available
 - They were optimized to write large programs that executed quickly
- He needed a language that could not only be used to create programs quickly but also make them easy to modify
 - It was designed to have a much simpler and cleaner syntax than other popular languages such as Java, C and C++ (making it easier to learn)
 - Python is interpreted, making it easier to develop and test short programs
- Python programs are executed by the Python interpreter
 - The interpreter reads your program and executes it

