
PROGRAMMING WITH NUMBERS AND
STRINGS

Chapter Two

Introduction
•  Numbers	and	character	strings	are	important	data	types	in	any	Python	
program	
•  These	are	the	fundamental	building	blocks	we	use	to	build	more	complex	
data	structures	

•  In	this	chapter,	you	will	learn	how	to	work	with	numbers	and	text.	
	We	will	write	several	simple	programs	that	use	them	

9/5/16	 2	

Chapter Goals
•  To	declare	and	iniFalize	variables	and	constants	
•  To	understand	the	properFes	and	limitaFons	of	integers	and	floaFng-
point	numbers	

•  To	appreciate	the	importance	of	comments	and	good	code	layout	

•  To	write	arithmeFc	expressions	and	assignment	statements	

•  To	create	programs	that	read,	and	process	inputs,	and	display	the	
results	

•  To	learn	how	to	use	Python	strings	
•  To	create	simple	graphics	programs	using	basic	shapes	and	text	

9/5/16	 3	

Contents
2.1 	Variables	

2.2 	ArithmeFc	

2.3 	Problem	Solving:		First	Do	It	By	Hand	

2.4	 	Strings	

2.5 	Input	and	Output	

2.6 	Graphics:	Simple	Drawings	

9/5/16	 4	

2.1 Variables

9/5/16	 5	

Variables
•  A	variable	is	a	named	storage	locaFon	in	a	computer	program	

•  There	are	many	different	types	of	variables,	each	type	used	to	store	
different	things	

•  You	‘define’	a	variable	by	telling	the	compiler:	
•  What	name	you	will	use	to	refer	to	it	
•  The	iniFal	value	of	the	variable	

•  You	use	an	assignment	statement	to	place	a	value	into	a	variable	

9/5/16	 6	

Variable Definition
•  To	define	a	variable,	you	must	specify	an	iniFal	value.	

9/5/16	 7	

The assignment statement
•  Use	the	assignment	statement	'='	to	place	a	new	value	into	a	variable	

cansPerPack	=	6			#	define	&	iniFalizes	the	variable	cansPerPack	

•  Beware:		The	“=“	sign	is	NOT	used	for	comparison:	
•  It	copies	the	value	on	the	right	side	into	the	variable	on	the	le`	side	
•  You	will	learn	about	the	comparison	operator	in	the	next	chapter	

9/5/16	 8	

Assignment syntax
•  The	value	on	the	right	of	the	'='	sign	is	assigned	to	the	variable	on	the	
le`	

9/5/16	 9	

An example: soda deal
•  So`	drinks	are	sold	in	cans	and	bobles.	A	store	offers	a	six-pack	of	12-
ounce	cans	for	the	same	price	as	a	two-liter	boble.	Which	should	you	
buy?	(12	fluid	ounces	equal	approximately	0.355	liters.)	

9/5/16	 10	

List	of	variables:	
Number	of	cans	per	pack	
Ounces	per	can	
Ounces	per	boble	

Type	of	Number	
Whole	number	
Whole	number	
Number	with	fracFon	

•  There	are	three	different	types	of	data	that	we	will	use	
in	this	chapter:	
1.  A	whole	number	(no	fracFonal	part)											7			(integer	or	int)	
2.  A	number	with	a	fracFon	part															8.88			(float)	
3.  A	sequence	of	characters																					"Bob”			(string)	
	

•  The	data	type	is	associated	with	the	value,	not	the	
variable:	

						cansPerPack	=	6				#	int	
				canVolume	=	12.0			#	float	

Why different types?

9/5/16	 11	

Updating a Variable (assigning a
value)

•  If	an	exisFng	variable	is	assigned	a	new	value,	that	value	replaces	the	
previous	contents	of	the	variable.		

•  For	example:	
•  cansPerPack	=	6	
•  cansPerPack	=	8	

9/5/16	 12	

Updating a Variable (computed)
•  ExecuFng	the	Assignment:		
					cansPerPack	=	cansPerPack	+	2	

•  Step	by	Step:	
•  Step	1:		Calculate	the	right	hand	side	of	the	assignment.	Find	the	value	
of	cansPerPack,	and	add	2	to	it.	

•  Step	2:		Store	the	result	in	the	variable	named	on	the	le`	side	of	the	
assignment	operator	

9/5/16	 13	

A Warning…
•  Since	the	data	type	is	associated	with	the	value	and	not	the	variable:	

•  A	variable	can	be	assigned	different	values	at	different	places	in	a	program	
taxRate	=	5 	 	 	#	an	int	
	
Then	later…	
	
taxRate = 5.5 # a float

	
And	then		
	
taxRate = “Non- taxable” # a string

	

•  If	you	use	a	variable	and	it	has	an	unexpected	type	an	error	will	occur	
in	your	program	

9/5/16	 14	

Our First Program of the Day…
•  Open	PyCharm	(our	IDE)	and	create	a	new	file	

•  type	in	the	following		
•  save	the	file	as	typetest.py	
•  Run	the	program	

	
Testing different types in the same variable
taxRate = 5 # int
print(taxRate)
taxrate = 5.5 # float
print(taxRate)
taxRate = "Non-taxable" # string
print(taxRate)
print(taxRate + 5)
	
•  So…	

•  Once	you	have	iniFalized	a	variable	with	a	value	of	a	parFcular	type	you	
should	take	great	care	to	keep	storing	values	of	the	same	type	in	the	
variable	

9/5/16	 15	

A Minor Change
•  Change	line	8	to	read:	
print(taxRate + “??”)
	
•  Save	your	changes	
•  Run	the	program	

•  What	is	the	result?	

•  When	you	use	the	“+”	operator	with	strings	the	second	argument	is	
concatenated	to	the	end	of	the	first	
•  We’ll	cover	string	operaFons	in	more	detail	later	in	this	chapter	

9/5/16	 16	

Table 1: Number Literals in Python

9/5/16	 17	

Naming variables
•  Variable	names	should	describe	the	purpose	of	the	variable	

•  ‘canVolume’	is	beber	than	‘cv’	

•  Use	These	Simple	Rules	
1.  Variable	names	must	start	with	a	leber	or	the	underscore	(_)	

character	
1.  ConFnue	with	lebers	(upper	or	lower	case),	digits	or	the	

underscore	
2.  You	cannot	use	other	symbols	(?	or	%...)	and	spaces	are	not	

permibed	
3.  Separate	words	with	‘camelCase’	notaFon	
1.  Use	upper	case	lebers	to	signify	word	boundaries	

4.  Don’t	use	‘reserved’	Python	words	(see	Appendix	C,	pages	A6	and	
A7)	

9/5/16	 18	

Table 2: Variable Names in Python

9/5/16	 19	

Programming Tip: Use Descriptive Variable
Names

•  Choose	descripFve	variable	names	

•  Which	variable	name	is	more	self	descripFve?	

canVolume = 0.35

cv = 0.355

•  This	is	parFcularly	important	when	programs	are	wriben	by	more	than	
one	person.	

9/5/16	 20	

constants
•  In	Python	a	constant	is	a	variable	whose	value	should	not	be	changed	
a`er	it’s	assigned	an	iniFal	value.	
•  It	is	a	good	pracFce	to	use	all	caps	when	naming	constants	

BOTTLE_VOLUME = 2.0

•  It	is	good	style	to	use	named	constants	to	explain	numerical	values	to	
be	used	in	calculaFons			
•  Which	is	clearer?	

totalVolume = bottles * 2

totalVolume = bottles * BOTTLE_VOLUME

•  A	programmer	reading	the	first	statement	may	not	understand	the	
significance	of	the	“2”			

•  Python	will	let	you	change	the	value	of	a	constant	
•  Just	because	you	can	do	it,	doesn’t	mean	you	should	do	it	

9/5/16	 21	

Constants: Naming & Style
•  It	is	customary	to	use	all	UPPER_CASE	lebers	for	constants	to	
disFnguish	them	from	variables.	
•  It	is	a	nice	visual	way	cue		

BOTTLE_VOLUME = 2 # Constant
MAX_SIZE = 100 # Constant

taxRate = 5 # Variable

	

9/5/16	 22	

Python comments
•  Use	comments	at	the	beginning	of	each	program,	and	to	clarify	details	
of	the	code	

•  Comments	are	a	courtesy	to	others	and	a	way	to	document	your	
thinking	
•  Comments	to	add	explanaFons	for	humans	who	read	your	code.		

•  The	compiler	ignores	comments.	

9/5/16	 23	

Commenting Code: 1st Style

This program computes the volume (in liters) of a six-pack of soda
cans and the total volume of a six-pack and a two-liter bottle

Liters in a 12-ounce can
CAN_VOLUME = 0.355

Liters in a two-liter bottle.
BOTTLE_VOLUME = 2

Number of cans per pack.
cansPerPack = 6

Calculate total volume in the cans.
totalVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE_VOLUME
print("A six-pack and a two-liter bottle contain", totalVolume,
"liters.")

9/5/16	 24	

Commenting Code: 2nd Style
##	
#		This	program	computes	the	volume	(in	liters)	of	a	six-pack	of	soda	
#		cans	and	the	total	volume	of	a	six-pack	and	a	two-liter	bottle	
#	
##	CONSTANTS	##	
CAN_VOLUME	=	0.355			#	Liters	in	a	12-ounce	can	
BOTTLE_VOLUME	=	2					#	Liters	in	a	two-liter	bottle	
	
#	Number	of	cans	per	pack.	
cansPerPack	=	6	
	
#	Calculate	total	volume	in	the	cans.	
totalVolume	=	cansPerPack	*	CAN_VOLUME	
print("A	six-pack	of	12-ounce	cans	contains",	totalVolume,	"liters.")	
	
#	Calculate	total	volume	in	the	cans	and	a	2-liter	bottle.	
totalVolume	=	totalVolume	+	BOTTLE_VOLUME	
print("A	six-pack	and	a	two-liter	bottle	contain",	totalVolume,	
"liters.")	

9/5/16	 25	

Undefined Variables
•  You	must	define	a	variable	before	you	use	it:	(i.e.	it	must	be	defined	
somewhere	above	the	line	of	code	where	you	first	use	the	variable)	

canVolume = 12 * literPerOunce
literPerOunce = 0.0296

•  The	correct	order	for	the	statements	is:	
literPerOunce	=	0.0296	
canVolume	=	12	*	literPerOunce	

9/5/16	 26	

2.2 Arithmetic

9/5/16	 27	

Basic Arithmetic Operations
•  Python	supports	all	of	the	basic	arithmeFc	operaFons:	

•  AddiFon		 	“+”	

•  SubtracFon		 	“-”	
•  MulFplicaFon		“*”	
•  Division														“/”	

•  You	write	your	expressions	a	bit	differently	

9/5/16	 28	

Precedence
•  Precedence	is	similar	to	Algebra:	

•  PEMDAS	
•  Parenthesis,	Exponent,	MulFply/Divide,	Add/Subtract	

9/5/16	 29	
Please	Excuse	My	Dear	Aunt	Sally	

Mixing numeric types
•  If	you	mix	integer	and	floaFng-point	values	in	an	arithmeFc	expression,	
the	result	is	a	floaFng-point	value.	

•  						7	+	4.0				#	Yields	the	floaFng	value	11.0	
•  Remember	from	our	earlier	example:	

•  If	you	mix	sFngs	with	integer	or	floaFng	point	values	the	result	is	an	error	

9/5/16	 30	

Powers
•  Double	stars	**	are	used	to	calculate	an	exponent	
•  	Analyzing	the	expression:	

	

	

	

•  Becomes:	
•  b	*	((1	+	r	/	100)	**	n)	

9/5/16	 31	

Floor division
•  When	you	divide	two	integers	with	the	/	operator,	you	get	a	floaFng-
point	value.	For	example,	

7	/	4	

•  Yields	1.75	

•  We	can	also	perform	floor	division	using	the	//	operator.		
•  The	“//”	operator	computes	the	quoFent	and	discards	the	fracFonal	part	

7	//	4	

•  Evaluates	to	1	because	7	divided	by	4	is	1.75	with	a	fracFonal	part	of	
0.75,	which	is	discarded.	

9/5/16	 32	

Calculating a remainder
•  If	you	are	interested	in	the	remainder	of	dividing	two	integers,	use	the	
“%”	operator	(called	modulus):	

remainder	=	7	%	4	

•  The	value	of	remainder	will	be	3	

•  SomeFmes	called	modulo	divide	

9/5/16	 33	

A Simple Example:
•  Open	a	new	file	in	the	PyCharm	IDE:	

•  Type	in	the	following:	
Convert pennies to dollars and cents
pennies = 1729
dollars = pennies // 100 # Calculates the number of dollars
cents = pennies % 100 # Calculates the number of pennies
print("I have", dollars, "and", cents, "cents")

•  Save	the	file	

•  Run	the	file	
•  What	is	the	result?	

9/5/16	 34	

Integer Division and Remainder
Examples

•  Handy	to	use	for	making	change:	
•  		pennies	=	1729	
•  		dollars	=	pennies	/	100		#	17	
•  		cents	=	pennies	%	100				#	29	

9/5/16	 35	

