
Arithmetic Expressions

9/7/16	 44	

Roundoff Errors
•  Floa,ng	point	values	are	not	exact	

•  This	is	a	limita,on	of	binary	values;	not	all	floa,ng	point	numbers	have	an	
exact	representa,on			

•  Open	PyCharm,	open	a	new	file	and	type	in:	
price = 4.35
quantity = 100
total = price * quantity
Should be 100 * 4.35 = 435.00
print(total)

•  You	can	deal	with	roundoff	errors	by	
•  rounding	to	the	nearest	integer	(see	Sec,on	2.2.4)		
•  or	by	displaying	a	fixed	number	of	digits	aPer	the	decimal	separator	(see	
Sec,on	2.5.3).	

9/7/16	 45	

Unbalanced Parentheses
•  Consider	the	expression	
((a + b) * t / 2 * (1 - t)

•  What	is	wrong	with	the	expression?	

•  Now	consider	this	expression.	
(a + b) * t) / (2 * (1 - t)

•  This	expression	has	three	“(“	and	three	“)”,	but	it	s,ll	is	not	correct	

•  At	any	point	in	an	expression	the	count	of	“(“	must	be	greater	than	or	
equal	to	the	count	of	“)”	

•  At	the	end	of	the	expression	the	two	counts	must	be	the	same	

9/7/16	 46	

Additional Programming Tips
•  Use	Spaces	in	expressions	
totalCans = fullCans + emptyCans

•  Is	easier	to	read	than	
totalCans=fullCans+emptyCans

•  Other	ways	to	import	modules:	
From math import sqrt, sin, cos # imports the functions listed
From math import * # imports all functions from the module
Import math # imports all functions from the module

•  If	you	use	the	last	style	you	have	to	add	the	module	name	and	a	“.”	before	
each	func,on	call	

y = math.sqrt(x)

	

9/7/16	 47	

2.3 Problem Solving
DEVELOP THE ALGORITHM FIRST, THEN
WRITE THE PYTHON

9/7/16	 48	

2.3 Problem Solving: First by Hand
•  A	very	important	step	for	developing	an	algorithm	is	to	first	carry	out	
the	computa,ons	by	hand.		
•  If	you	can’t	compute	a	solu,on	by	hand,	how	do	you	write	the	
program?	

•  Example	Problem:			
•  A	row	of	black	and	white	,les	needs	to	be	placed	along	a	wall.	For	
aesthe,c	reasons,	the	architect	has	specified	that	the	first	and	last	
,le	shall	be	black.	

•  Your	task	is	to	compute	the	number	of	,les	needed	and	the	gap	at	
each	end,	given	the	space	available	and	the	width	of	each	,le.	

9/7/16	 49	

Start with example values
•  Givens	
•  Total	width:	100	inches	
•  Tile	width:	5	inches	
•  Test	your	values	

•  Let’s	see…	100/5	=	20,	perfect!		20	,les.	No	gap.	
•  But	wait…	BW…BW		“…first	and	last	,le	shall	be	black.”	

•  Look	more	carefully	at	the	problem….	
•  Start	with	one	black,	then	some	number	of	WB	pairs	

•  Observa,on:		each	pair	is	2x	width	of	1	,le	
•  In	our	example,	2	x	5	=	10	inches	

9/7/16	 50	

Keep applying your solution
•  Total	width:	100	inches	
•  Tile	width:	5	inches	

•  Calculate	total	width	of	all	,les	
•  One	black	,le:	5”	
•  9	pairs	of	BWs:	90”	

•  Total	,le	width:	95”	

•  Calculate	gaps	(one	on	each	end)	
•  100	–	95	=	5”	total	gap	
•  5”	gap	/	2	=	2.5”	at	each	end	

9/7/16	 51	

Now devise an algorithm
•  Use	your	example	to	see	how	you	calculated	values	

•  How	many	pairs?	
•  Note:		must	be	a	whole	number	
•  Integer	part	of:		(total	width	–	,le	width)	/	2	x	,le	width	

•  How	many	,les?	
•  1	+	2	x	the	number	of	pairs	

•  Gap	at	each	end	
•  (total	width	–	number	of	,les	x	,le	width)	/	2	

9/7/16	 52	

The algorithm
•  Calculate	the	number	of	pairs	of	,les	

•  Number	of	pairs	=	integer	part	of	(total	width	–	,le	width)	/	(2	*	,le	width)	

•  Calculate	the	number	of	,les	
•  Number	of	,les	=	1	+	(2	*	number	of	pairs)	

•  Calculate	the	gap	
•  Gap	at	each	end	=	(total	width	–	number	of	,les	*	,le	width	/	2	

•  Print	the	number	of	pairs	of	,les	

•  Print	the	total	number	of	,les	in	the	row	

•  Print	the	gap	

9/7/16	 53	

2.4 Strings

9/7/16	 54	

Strings
•  Start	with	some	simple	defini,ons:	

•  Text	consists	of	characters	
•  Characters	are	lekers,	numbers,	punctua,on	marks,	spaces,	….	
•  A	string	is	a	sequence	of	characters	

•  In	Python,	string	literals	are	specified	by	enclosing	a	sequence	of	
characters	within	a	matching	pair	of	either	single	or	double	quotes.	

		print("This	is	a	string.",	'So	is	this.')	

•  By	allowing	both	types	of	delimiters,	Python	makes	it	easy	to	include	
an	apostrophe	or	quota,on	mark	within	a	string.	
•  		message	=	'He	said	"Hello"‘	

•  Remember	to	use	matching	pairs	of	quotes,	single	with	single,	double	with	
double	

9/7/16	 55	

String Length
•  The	number	of	characters	in	a	string	is	called	the	length	of	the	string.	
(For	example,	the	length	of	"Harry"	is	5).	

•  You	can	compute	the	length	of	a	string	using	Python’s	len()	func,on:	

		length	=	len("World!")	#	length	is	6	

•  A	string	of	length	0	is	called	the	empty	string.	It	contains	no	characters	
and	is	wriken	as	""	or	''.	

9/7/16	 56	

String Concatenation (“+”)
•  You	can	‘add’	one	String	onto	the	end	of	another	
	firstName	=	"Harry"	

	lastName	=	"Morgan"	

	name		=	firstName	+	lastName		#	HarryMorgan	

print(“my	name	is:”,	name)	

•  You	wanted	a	space	in	between	the	two	names?	

	name	=	firstName	+	"	"	+	lastName		#	Harry	Morgan	

Using	“+”	to	concatenate	strings	is	an	example	of	a	concept	called	
operator	overloading.		The	“+”	operator	performs	different	func,ons	of	

variables	of	different	types	

9/7/16	 57	

String repetition (“*”)
•  You	can	also	produce	a	string	that	is	the	result	of	repea,ng	a	string	
mul,ple	,mes.	

•  Suppose	you	need	to	print	a	dashed	line.	
•  Instead	of	specifying	a	literal	string	with	50	dashes,	you	can	use	the	*	
operator	to	create	a	string	that	is	comprised	of	the	string	"-"	repeated	
50	,mes.	

	dashes	=	"-"	*	50	

•  results	in	the	string	
•  		"---“	

The	“*”	operator	is	also	overloaded.	

9/7/16	 58	

Converting Numbers to Strings
•  Use	the	str()	func,on	to	convert	between	numbers	and	strings.	

•  Open	PyCharm,	then	open	a	new	file	and	type	in:	
balance = 888.88
dollars = 888
balanceAsString = str(balance)
dollarsAsString = str(dollars)
print(balanceAsString)
print(dollarsAsString)

•  To	turn	a	string	containing	a	number	into	a	numerical	value,	we	use	
the	int()	and	float()	func,ons:	

id = int("1729")
price = float("17.29")
print(id)
print(price)

•  This	conversion	is	important	when	the	strings	come	from	user	input.	

9/7/16	 59	

Strings and Characters
•  strings	are	sequences	of	characters	

•  Python	uses	Unicode	characters	
•  Unicode	defines	over	100,000	characters	

•  Unicode	was	designed	to	be	able	to	encode	text	in	essen,ally	all	wriken	languages	

•  Characters	are	stored	as	integer	values	
•  See	the	ASCII	subset	on	Unicode	chart	in	Appendix	A	

•  For	example,	the	leker	‘H’	has	a	value	of	72	

9/7/16	 60	

Copying a character from a String
•  Each	char	inside	a	String	has	an	index	number:	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

c	 h	 a	 r	 s	 h	 e	 r	 e	

0	 1	 2	 3	 4	

H	 a	 r	 r	 y	

9/7/16	 61	

•  The	first	char	is	index	zero	(0)	
•  The	[]	operator	returns	a	char	at	a	given	index	inside	a	String:	
name	=	"Harry”	
start	=	name[0]	
last	=	name[4]	

String Operations

9/7/16	 62	

Data plus tools

9/7/16	 63	

Methods
•  In	computer	programming,	an	object	is	a	soPware	en,ty	that	
represents	a	value	with	certain	behavior.	
•  The	value	can	be	simple,	such	as	a	string,	or	complex,	like	a	graphical	
window	or	data	file.	

•  The	behavior	of	an	object	is	given	through	its	methods.	
•  A	method	is	a	collec,on	of	programming	instruc,ons	to	carry	out	a	specific	
task	–	similar	to	a	func,on	

•  But	unlike	a	funcAon,	which	is	a	standalone	opera,on,	a	method	can	
only	be	applied	to	an	object	of	the	type	for	which	it	was	defined.	
•  Methods	are	specific	to	a	type	of	object	
•  Func,ons	are	general	and	can	accept	arguments	of	different	types		

•  You	can	apply	the	upper()	method	to	any	string,	like	this:	
•  		name	=	"John	Smith"	
•  		#	Sets	uppercaseName	to	"JOHN	SMITH"	
•  		uppercaseName	=	name.upper()	

9/7/16	 64	

Some Useful String Methods

9/7/16	 65	

String Escape Sequences
•  How	would	you	print	a	double	quote?	

•  Preface	the	"	with	a	“\”	inside	the	double	quoted	String	

print("He	said	\"Hello\"")	

•  OK,	then	how	do	you	print	a	backslash?	
•  Preface	the	\	with	another	\	

System.out.print("“C:\\Temp\\Secret.txt“")	

•  Special	characters	inside	Strings	
•  Output	a	newline	with	a	‘\n’	

print("*\n**\n***\n")	

*	
**	

9/7/16	 66	

2.5 Input and Output

9/7/16	 67	

Input and Output
•  You	can	read	a	String	from	the	console	with	the	input()	func,on:	

•  		name	=	input("Please	enter	your	name")	

•  Conver,ng	a	String	variable	to	a	number	can	be	used	if	numeric	(rather	
than	string	input)	is	needed	
•  		age	=	int(input("Please	enter	age:	"))	

•  The	above	is	equivalent	to	doing	it	two	steps	(gezng	the	input	and	then	
conver,ng	it	to	a	number):	

•  		aString	=	input("Please	enter	age:	")	#	String	input	
•  		age	=	int(aString) 	 	 					#	Converted	to			
•  																																								#	int	

9/7/16	 68	

Formatted output
•  Outpuzng	floa,ng	point	values	can	look	strange:	
Price per liter: 1.21997

•  To	control	the	output	appearance	of	numeric	variables,	use	formaked	
output	tools	such	as:	
print("Price per liter %.2f" %(price))

Price per liter: 1.22

print("Price per liter %10.2f" %(price))

Price per liter: 1.22

•  The	%10.2f	is	called	a	format	specifier	
10 spaces 2 spaces

9/7/16	 69	

Syntax: formatting strings

9/7/16	 70	

Format flag examples
•  LeP	Jus,fy	a	String:	
•  					print("%-10s"	%("Total:"))	

•  Right	jus,fy	a	number	with	two	decimal	places	
•  	print("%10.2f"	%(price))	

•  And	you	can	print	mul,ple	values:	
•  	print("%-10s%10.2f"	%("Total:	",	price))	

9/7/16	 71	

Volume2.py

9/7/16	 72	

Format Specifier Examples

9/7/16	 73	

2.6 Graphics
SIMPLE DRAWINGS

9/7/16	 74	

Drawing Simple Graphics
•  To	help	you	create	simple	drawings,	we	have	included	a	graphics	
module	with	the	book	that	is	a	simplified	version	of	Python’s	more	
complex	library	module.		

•  The	module	code	and	usage	instruc,ons	are	available	with	the	source	
code	for	the	book	on	its	companion	web	site.	

9/7/16	 75	

Using the graphics module (1)
•  To	create	a	graphical	applica,on	using	the	graphics	module,	carry	out	
the	following	at	the	top	of	your	program:	

from graphics import GraphicsWindow

•  Create	a	graphics	window	(640	x	480	pixels):	
win = GraphicsWindow(640, 480)	

•  Access	the	canvas	contained	in	the	graphics	window:	
canvas = win.canvas()

9/7/16	 76	

Using the graphics module (2)
•  Create	your	drawing.	
canvas.drawRect(15, 10, 20, 30)	

•  Have	the	program	wait	for	the	user	to	close	the	window	(by	clicking	
the	close	bukon).		
•  Without	this	statement,	the	program	would	terminate	immediately	and	the	
graphics	window	would	disappear,	leaving	no	,me	for	you	to	see	your	
drawing.	

win.wait()

9/7/16	 77	

A graphics window

9/7/16	 78	

A complete drawing example

9/7/16	 79	

Table 10: GraphicsWindow Methods

9/7/16	 80	

Drawing shapes
•  Basic	shapes	have	4	proper,es:	x	coordinate,	y	coordinate,	width	and	
height.	

•  Example:		

canvas.drawRect(15, 10, 20, 30)

•  This	statement	draws	a	rectangle	with	the	upper	top	leP	corner	at	
point	(x	=	15,	y	=	10)	in	the	window	with	a	height	of	20	and	a	width	of	
30.	

•  Common	shapes	that	can	be	drawn	include:	rectangles,	squares,	circles	
and	ovals.	

9/7/16	 81	

Drawing lines
•  Lines	require	4	slightly	different	proper,es	than	drawing	shapes:	

•  Point	1(x	coordinate,	y	coordinate)	
•  Point	2(x	coordinate,	y	coordinate)	

9/7/16	 82	

Table 13: Common Shapes, Lines
and Text

9/7/16	 83	

The canvas and shapes can be
colored

•  If	you	use	the	default	sezng	(not	changing	the	fill	or	outline),	shapes	
are	outlined	in	black	and	there	is	no	fill	color.	

•  The	fill	color	and	outline	can	be	set	to	different	colors	with	the	method	
calls:	

setFill(<color name>)

OR	

setFill(<red level>, <green level>, <blue level>)

setOutline(<color name>)

OR	

setOutline(<red level>, <green level>, <blue level>)

9/7/16	 84	

Example of setting color
•  The	following	statements	draw	a	rectangle	that	is	outlined	in	black	and	
filled	with	green.	

canvas.setOutline("black")

canvas.setFill(0, 255, 0)

canvas.drawRect(10, 20, 100, 50)

9/7/16	 85	

Table 11: Common Color Names

9/7/16	 86	

Table 12: GraphicsCanvas Color
Methods

9/7/16	 87	

Summary: variables
•  A	variable	is	a	storage	loca,on	with	a	name.	

•  When	defining	a	variable,	you	must	specify	an	ini,al	value.	

•  By	conven,on,	variable	names	should	start	with	a	lower	case	leker.	

•  An	assignment	statement	stores	a	new	value	in	a	variable,	replacing	
the	previously	stored	value.		

9/7/16	 88	

Summary: operators
•  The	assignment	operator	=	does	not	denote	mathema,cal	equality.	

•  Variables	whose	ini,al	value	should	not	change	are	typically	capitalized	
by	conven,on.		

•  The	/	operator	performs	a	division	yielding	a	value	that	may	have	a	
frac,onal	value.	

•  The	//	operator	performs	a	division,	the	remainder	is	discarded.	

•  The	%	operator	computes	the	remainder	of	a	floor	division.	

9/7/16	 89	

Summary: python overview
•  The	Python	library	declares	many	mathema,cal	func,ons,	such	as	
sqrt()	and	abs()	

•  You	can	convert	between	integers,	floats	and	strings	using	the	
respec,ve	func,ons:	int(),	float(),	str()	

•  Python	libraries	are	grouped	into	modules.	Use	the	import	statement	
to	use	methods	from	a	module.	

•  Use	the	input()	func,on	to	read	keyboard	input	in	a	console	window.	

9/7/16	 90	

Summary: python overview
•  Use	the	format	specifiers	to	specify	how	values	should	be	formaked.	

9/7/16	 91	

Summary: Strings
•  Strings	are	sequences	of	characters.	
•  The	len()	func,on	yields	the	number	of	characters	in	a	String.	

•  Use	the	+	operator	to	concatenate	Strings;	that	is,	to	put	them	
together	to	yield	a	longer	String.	

•  In	order	to	perform	a	concatena,on,	the	+	operator	requires	both	
arguments	to	be	strings.	Numbers	must	be	converted	to	strings	using	
the	str()	func,on.	

•  String	index	numbers	are	counted	star,ng	with	0.	

9/7/16	 92	

Summary: Strings
•  Use	the	[]	operator	to	extract	the	elements	of	a	String.	

9/7/16	 93	

Summary: graphics
•  Graphical	shapes	(such	as	squares,	rectangles,	circles,	ovals),	or	lines	
and	text	can	be	drawn	using	the	graphics	module.	

•  The	color	of	graphical	objects	can	be	set	with	the	setOutline()	and	
setFill()	methods.	

9/7/16	 94	

Chapter Goals
•  To	declare	and	ini,alize	variables	and	constants	
•  To	understand	the	proper,es	and	limita,ons	of	integers	and	floa,ng-
point	numbers	

•  To	appreciate	the	importance	of	comments	and	good	code	layout	

•  To	write	arithme,c	expressions	and	assignment	statements	

•  To	create	programs	that	read,	and	process	inputs,	and	display	the	
results	

•  To	learn	how	to	use	Python	strings	
•  To	create	simple	graphics	programs	using	basic	shapes	and	text	

9/7/16	 95	

