Arithmetic Expressions

Table 6 Arithmetic Expression Examples

Mathematical Python
: : Comments
Expression Expression
x+y x+y) /2 The parentlleses are required;
‘}l
2 X +y / 2computes X + =,
xy X *y /2 Parentheses are not required; operators with
2 the same precedenee are evaluated left to right.
— (1+r /100) ** n The parentheses are required.
I+ —
100
22 + b2 sqrt(a ** 2 + b ** 2) You mustimport the sqrt function from the
math module.
7 pi pi 1s a constant declared in the math module.

9/7/16 44

Roundoff Errors

* Floating point values are not exact

e This is a limitation of binary values; not all floating point numbers have an
exact representation

* Open PyCharm, open a new file and type in:
price = 4.35

quantity = 100

total = price * quantity

Should be 100 * 4.35 = 435.00
print(total)

* You can deal with roundoff errors by
* rounding to the nearest integer (see Section 2.2.4)

* or by displaying a fixed number of digits after the decimal separator (see
Section 2.5.3).

9/7/16

45

Unbalanced Parentheses

Consider the expression
(a@a+b)y =t/ 2* Q- t)

* What is wrong with the expression?

Now consider this expression.
(a+b)*t)y / @2* (1 -1

* This expression has three “(“ and three “)”, but it still is not correct

II(II

At any point in an expression the count of “(“ must be greater than or

equal to the count of “)”

At the end of the expression the two counts must be the same

9/7/16 46

Additional Programming Tips

* Use Spaces in expressions
totalCans = fullCans + emptyCans
* |s easier to read than

totalCans=fullCans+emptyCans

e Other ways to import modules:

From math import sqrt, sin, cos # imports the functions listed
From math import * # imports all functions from the module
Import math # imports all functions from the module

* If you use the last style you have to add the module name and a “.” before
each function call

y = math.sqgrt(x)

9/7/16 47

2.3 Problem Solving

DEVELOP THE ALGORITHM FIRST, THEN
WRITE THE PYTHON

9/7/16 48

2.3 Problem Solving: First by Hand

* A veryimportant step for developing an algorithm is to first carry out
the computations by hand.

* If you can’t compute a solution by hand, how do you write the
program?

 Example Problem:

* A row of black and white tiles needs to be placed along a wall. For
aesthetic reasons, the architect has specified that the first and last
tile shall be black.

* Your task is to compute the number of tiles needed and the gap at
each end, given the space available and the width of each tile.

Tofal width >

9/7/16

49

Start with example values

Givens Total width

Tile width: 5 inches

Total width: 100 inches :.\:-/E

Test your values ™
* Let ssee... 100/5 = 20, perfect! 20 tiles. No g%p

e But wait... BW...BW “...first and last tile shall be black.”

Look more carefully at the problem....
e Start with one black, then some number of WB pairs

HENENNER

e Observation: each pair is 2x width of 1 tile
* Inourexample, 2 x5 =10 inches

9/7/16

50

Keep applying your solution

e Total width: 100 inches

* Tile width: 5 inches) Total width >

Gap
e Calculate total width of all tiles
e One black tile: 57

* 9 pairs of BWs: 90"
* Total tile width: 95”

e Calculate gaps (one on each end)
e 100-95=5" total gap
e« 5" gap/2=2.5" ateachend

9/7/16

51

Now devise an algorithm

Use your example to see how you calculated values

How many pairs?
* Note: must be a whole number
* Integer part of: (total width — tile width) / 2 x tile width

How many tiles?
* 1+ 2 xthe number of pairs

Gap at each end
* (total width — number of tiles x tile width) / 2

9/7/16

52

The algorithm

Calculate the number of pairs of tiles
* Number of pairs = integer part of (total width — tile width) / (2 * tile width)

Calculate the number of tiles
* Number of tiles =1 + (2 * number of pairs)

Calculate the gap
* Gap at each end = (total width — number of tiles * tile width / 2

Print the number of pairs of tiles
Print the total number of tiles in the row

Print the gap

9/7/16

53

2.4 Strings

Strings

e Start with some simple definitions:
* Text consists of characters

e Characters are letters, numbers, punctuation marks, spaces,
e Astring is a sequence of characters

* In Python, string literals are specified by enclosing a sequence of
characters within a matching pair of either single or double quotes.

print("This is a string.", 'So is this.')

* By allowing both types of delimiters, Python makes it easy to include
an apostrophe or quotation mark within a string.
* message = 'He said "Hello"’

« Remember to use matching pairs of quotes, single with single, double with
double

9/7/16

55

String Length

 The number of characters in a string is called the length of the string.
(For example, the length of "Harry" is 5).

* You can compute the length of a string using Python’ s len() function:
length = len("World!") # length is 6

* Astring of length O is called the empty string. It contains no characters

and is written as "" or "',

9/7/16 56

String Concatenation ("+”

* You can ‘add’ one String onto the end of another
firstName = "Harry"

lastName = "Morgan"

name = firstName + l[astName # HarryMorgan
print(“my name is:”, name)

* You wanted a space in between the two names?

name = firstName + " " + [astName # Harry Morgan

Using “+” to concatenate strings is an example of a concept called
operator overloading. The “+” operator performs different functions of
variables of different types

9/7/16 57

" "y (E%)
String repetition (*7)
* You can also produce a string that is the result of repeating a string
multiple times.

e Suppose you need to print a dashed line.

* Instead of specifying a literal string with 50 dashes, you can use the *
operator to create a string that is comprised of the string "-" repeated
50 times.

dashes ="-" * 50

* results in the string

The “*” operator is also overloaded.

9/7/16 58

Converting Numbers to Strings

e Use the str() function to convert between numbers and strings.

* Open PyCharm, then open a new file and type in:

balance = 888.88

dollars = 888

balanceAsString = str(balance)
dollarsAsString = str(dollars)
print(balanceAsString)
print(dollarsAsString)

e To turn a string containing a number into a numerical value, we use
the int() and float() functions:

1id = 1nt("1729")

price = float("17.29")

print(id)

print(price)

* This conversion is important when the strings come from user input.

9/7/16

59

Strings and Characters

 strings are sequences of characters
e Python uses Unicode characters

* Unicode defines over 100,000 characters

* Unicode was designed to be able to encode text in essentially all written languages

e Characters are stored as integer values
* See the ASCII subset on Unicode chart in Appendix A

« For example, the letter ‘H’ has a value of 72

9/7/16

60

Copying a character from a String

e Each char inside a String has an index number:

o 1[2]3 |4 |5]|6]7]8]09
C h a r S h e r e

e The first char is index zero (0)

* The [] operator returns a char at a given index inside a String:

name = "Harry” nﬂﬂﬂ
H a r r Y

start = name[0]
last = name[4]

9/7/16 61

String Operations

Table 7 String Operations

Statement Result Comment
string = "Py" string 1s set to "Python" When applied to strings, + denotes
string = string + "thon" concatenation.
print("Please" + Prints Use concatenation to break up strings
" enter your name: ") Please enter your name: that don’t fit into one line.
team = str(49) + "ers" team 1s set to "49ers" Because 49 1s an integer, it must be
converted to a string.
greeting = "H & S" nissetto 5 Each space counts as one character.

n = len(greeting)

string = "Sally" chis setto "a" Note that the initial position 1s 0.
ch = string[1]

last = string[len(string) - 1] Tast is set to the string containing The last character has position
the last character in string len(string) - 1.

9/7/16 62

Data plus tools

9/7/16 63

Methods

In computer programming, an object is a software entity that
represents a value with certain behavior.

e The value can be simple, such as a string, or complex, like a graphical
window or data file.

The behavior of an object is given through its methods.

* A method is a collection of programming instructions to carry out a specific
task — similar to a function

But unlike a function, which is a standalone operation, a method can
only be applied to an object of the type for which it was defined.

* Methods are specific to a type of object
* Functions are general and can accept arguments of different types

You can apply the upper() method to any string, like this:
* name ="John Smith"

* # Sets uppercaseName to "JOHN SMITH"
e uppercaseName = name.upper()

9/7/16 64

Some Useful String Methods

Table 8 Useful String Methods

Method Returns
s.lower() A lowercase version of string s.
s.upper() An uppercase version of s.
s.replace(old, new) A new version of string s in which every occurrence of

the substring old is rcplaccd by the string new.

9/7/16 65

String Escape Sequences

 How would you print a double quote?
* Preface the " with a “\” inside the double quoted String

print("He said \"Hello\"")

e OK, then how do you print a backslash?
e Preface the \ with another\

System.out.print("“C:\\Temp\\Secret.txt“")

» Special characters inside Strings %
e Output a newline witha ‘\n’ ¢ 3¢
print("*\n**\n***\n") % % %

9/7/16

66

2.5 Input and Output

Input and Output

* You can read a String from the console with the input() function:
 name = input("Please enter your name")

e Converting a String variable to a number can be used if numeric (rather
than string input) is needed

* age = int(input("Please enter age: "))

The above is equivalent to doing it two steps (getting the input and then
converting it to a number):

aString = input("Please enter age: ") # String input
e age = int(aString) # Converted to
. #int

9/7/16 68

Formatted output

e Outputting floating point values can look strange:
Price per liter: 1.21997

* To control the output appearance of numeric variables, use formatted
output tools such as:

print("Price per liter %.2f" %(price))
Price per liter: 1.22

print("Price per liter %10.2f" %(price))
Price per liter: 1.22

N B 7 2

The %10.2f is called a format specifier |

10 spaces 2 spaces

9/7/16 69

Syntax: formatting strings

Syntax formatString % (value,, value,,

The format string can contain one or more
format specifiers and literal characters.

print("Quantity:
H,_J

It is common to print ,
Format specifiers

a formatted string.

%d Total:

e vcz[ue”)

No parentheses are needed
to format a single valve.

i\»{_{ % (quantity, total))
The values to be formatted. Each

value replaces one of the format
specifiers in the resulting string.

9/7/16

70

Format flag examples

Left Justify a String:
print("%-10s" %("Total:"))

Right justify a number with two decimal places
e print("%10.2f" %(price))

width 10

A

T o t a 1

/

width 10

e A
1 N0 N 2
* And you can print multiple values:
e print("%-10s%10.2f" %("Total: ", price))
. . Two digits after
A left-justified width 10 width 10 the decimal point
string
4 A N/ A N\
T o t a 1 17 . 2 9

9/7/16

71

Volume2.py

ch02/volume2.py
=z

'This program prints the price per ounce for a six-pack ot cans.
#

CANS_PER_PACK =

Obtain pricc per Pack and can volume.

1
2
3
4
5 # Detine constant for pack size.
6
7
8
9

userInput = input("Please enter the price for a six-pack: ")
10 packPrice = float(userInput)
11
12 userInput = input(“Please enter the volume for each can
13 canVolume = float(userInput)

15 # Compute pack volume.

16 packVolume = canVolume * CANS_PER_PACK

17

18 # Compute and print price per ounce.

19 pricePerOunce = packPrice / packVolume

20 print("Price per ounce: %8.2f" % pricePerOunce)

9/7/16

Format Specifier Examples

Format String

"Quantity:%5d"

"%d %.2f"

9/7/16

"%d"

"%5d"

||%05dn

"%f"

"%.2f"

"%7.2f"

II%SII

"%95"

"%—95"

"%d%%"

Sample Output

Table 9 Format Specifier Examples

Comments
Use d with an integer.
Spaces are added so that the field width is 5.

If you add 0 before the field width, zeroes
are added instead of spaces.

Characters inside a format string but outside
a format specifier appear in the output.

Use f with a floating-point number.

Prints two digits after the decimal point.
Spaces are added so that the field widthis 7.
Use s with a string.

You can format multiple values at once.
Strings are right-justified by default.

Use a negative field width to left-justify.

To add a percent sign to the output, use %%.

73

2.6 Graphics

SIMPLE DRAWINGS

Drawing Simple Graphics

* To help you create simple drawings, we have included a graphics
module with the book that is a simplified version of Python’ s more
complex library module.

 The module code and usage instructions are available with the source
code for the book on its companion web site.

9/7/16 75

Using the graphics module (1)

* To create a graphical application using the graphics module, carry out
the following at the top of your program:

from graphics import Graphicswindow

* Create a graphics window (640 x 480 pixels):

win = Graphicswindow(640, 480)

* Access the canvas contained in the graphics window:

canvas = win.canvas()

9/7/16

76

Using the graphics module (2)

* Create your drawing.

canvas.drawRect(15, 10, 20, 30)

e Have the program wait for the user to close the window (by clicking
the close button).

* Without this statement, the program would terminate immediately and the
graphics window would disappear, leaving no time for you to see your
drawing.

win.wait()

9/7/16 77

A graphics window

=<
]

Graphical shapes are drawn
Window on the canvas.

Canvas

9/7/16

Close button

78

A complete drawing example

ch02/window.py
1 ##
2 # Thl\ ‘IOSI am creates a "I lphl SWwW llldO“ W lth a rect: lll\’l(It D2Irov lClL\ thL
3 # tcmpilu used with all of the graphical programs used in the Eool«.
4 #
5
6 from graphics import GraphicsWindow
7
8 # (reate t]lL \\lIldO\\ ‘llld aCCECSS thC canvas.
9 win = GraphicsWindow()

10 canvas = win.canvas()

11

12 # Draw on the canvas.

13 canvas.drawRect(5, 10, 20, 30)

14

15 # Wait for the user to close the window.

16 win.wait(Q)

9/7/16

79

Table 10: GraphicsWindow Methods

&

&

9/7/16

Table 10 GraphicsWindow Methods

Method

GraphicsWindow()
GraphicsWindow(width, /)eig/)t)

.canvas()

rowait()

Description

Creates a new graphics window with an
empty canvas. The size of the canvas is
400 x 400 unless another size is speciﬁcd.

Returns the object representing the canvas
contained in the graphics window.

Keeps the graphics window open and waits
for the user to click the “close” button.

80

Drawing shapes

* Basic shapes have 4 properties: x coordinate, y coordinate, width and
height.

 Example:
canvas.drawRect (15, 10, 20, 30)

* This statement draws a rectangle with the upper top left corner at
point (x =15, y = 10) in the window with a height of 20 and a width of
30.

 Common shapes that can be drawn include: rectangles, squares, circles
and ovals.

9/7/16 81

Drawing lines

* Lines require 4 slightly different properties than drawing shapes:
e Point 1(x coordinate, y coordinate)

* Point 2(x coordinate, y coordinate)

9/7/16

82

Table 13: Common Shapes, Lines

and Text

Table 13

Method

c.drawLine(xy, y1, X2, ¥72)
c.drawRect(x, vy, width, /Jeig/)t)

c.drawoval(x, y, width, height)

c.drawText(x, y, text)

9/7/16

GraphicsCanvas Drawing Methods
Result Notes

(x1,71) and (x5, y,) are the endpoints.

|:| (x,y) is the top left corner.

v i (x,y)1s the top—left corner of the box that
)

N A bounds the ellipse. To draw a circle, use the

same value for width and /Jf’ig/)z‘.

e Meg,g agei (x, y) 1s the anchor point.

83

The canvas and shapes can be
colored

 If you use the default setting (not changing the fill or outline), shapes
are outlined in black and there is no fill color.

* The fill color and outline can be set to different colors with the method
calls:

setFill(<color name>)
OR

setFill(<red level>, <green level>, <blue level>)

setoutline(<color name>)
OR

setoutline(<red level>, <green level>, <blue level>)

9/7/16 84

Example of setting color

* The following statements draw a rectangle that is outlined in black and
filled with green.

canvas.setoutline("black")

canvas.setFil11(0, 255, 0)

canvas.drawRect (10, 20, 100, 50)

9/7/16 85

Table 11: Common Color Names

9/7/16

Color Name
"black"
"blue"
"red"
"green”

Ilcyanll

Table 11 Common Color Names

Color Name
"magenta”
"yellow"
"white"
=gray”

"go‘ld"

Color Name
"maroon”
"dark blue"
"dark red"
"dark green"

"dark cyan"

Color Name
"pink"
"orange"
"sea green"
"Tight gray"

"tan

86

Table 12: GraphicsCanvas Color
Methods

Table 12 GraphicsCanvas Color Methods

Method

c.setColor(name)
c.setColor(red, green, blue)

.setFil10)

c.setFill(name)
c.setFill(red, green, blue)

c.setOutline()
c.setOutline(name)
c.setOutline(red, green, blue)

9/7/16

Description

Sets both the fill and outline color to the same
color. Color can be set by the color’s name or by
values for its red, green, and blue components.

Sets the color used to fill a geometric shape. If no
argument is given, the fill color is cleared.

Sets the color used to draw lines and text. If no
argument is given, the outline color is cleared.

87

Summary: variables

A variable is a storage location with a name.
When defining a variable, you must specify an initial value.
By convention, variable names should start with a lower case letter.

An assignment statement stores a new value in a variable, replacing
the previously stored value.

9/7/16

88

Summary: operators

The assignment operator = does not denote mathematical equality.

Variables whose initial value should not change are typically capitalized
by convention.

The / operator performs a division yielding a value that may have a
fractional value.

The // operator performs a division, the remainder is discarded.

The % operator computes the remainder of a floor division.

9/7/16 89

Summary: python overview

* The Python library declares many mathematical functions, such as
sgrt() and abs()

* You can convert between integers, floats and strings using the
respective functions: int(), float(), str()

e Python libraries are grouped into modules. Use the import statement
to use methods from a module.

e Use the input() function to read keyboard input in a console window.

9/7/16 90

Summary: python overview

* Use the format specifiers to specify how values should be formatted.

9/7/16

91

Summary: Strings

Strings are sequences of characters.
The len() function yields the number of characters in a String.

Use the + operator to concatenate Strings; that is, to put them
together to yield a longer String.

In order to perform a concatenation, the + operator requires both
arguments to be strings. Numbers must be converted to strings using
the str() function.

String index numbers are counted starting with O.

9/7/16

92

Summary: Strings

e Use the [] operator to extract the elements of a String.

9/7/16

93

Summary: graphics

e Graphical shapes (such as squares, rectangles, circles, ovals), or lines
and text can be drawn using the graphics module.

* The color of graphical objects can be set with the setOutline() and
setFill() methods.

9/7/16

94

Chapter Goals

To declare and initialize variables and constants

To understand the properties and limitations of integers and floating-
point numbers

To appreciate the importance of comments and good code layout
To write arithmetic expressions and assignment statements

To create programs that read, and process inputs, and display the
results

To learn how to use Python strings

To create simple graphics programs using basic shapes and text

9/7/16

95

