
PART ONE: DECISIONS, RELATIONAL 
OPERATORS 

Chapter Three 



Chapter Goals 
•  To	implement	decisions	using	the	if	statement	

•  To	compare	integers,	floa6ng-point	numbers,	and	Strings	

•  To	write	statements	using	the	Boolean	data	type	

•  To	develop	strategies	for	tes6ng	your	programs	

•  To	validate	user	input	

In	this	chapter,	you	will	learn	how	to	program	simple	and	complex	
decisions.	You	will	apply	what	you	learn	to	the	task	of	checking	

user	input.	

9/12/16	 2	



Contents 
•  The	if	Statement	

•  Rela6onal	Operators	

•  Nested	Branches	
•  Mul6ple	Alterna6ves	

•  Problem	Solving:	Flowcharts	

•  Problem	Solving:	Test	Cases	

•  Boolean	Variables	and	Operators	

•  Analyzing	Strings	
•  Applica6on:		Input	Valida6on	

9/12/16	 3	



9/12/16	 4	



The if Statement 
•  A	computer	program	oQen	needs	to	make	decisions	based	on	input,	or	
circumstances	

•  For	example,	buildings	oQen	‘skip’	the	13th	floor,	and	elevators	should	
too	
•  The	14th	floor	is	really	the	13th	floor	
•  So	every	floor	above	12	is	really	‘floor	-	1’	

•  If	floor	>	12,	Actual	floor	=	floor	-	1	

•  The	two	keywords	of	the	if	statement	are:	
•  if	
•  else	

	

	

	

The if statement allows a program to 
carry out different actions depending on 
the nature of the data to be processed. 

9/12/16	 5	



Flowchart of the if Statement 
•  One	of	the	two	branches	is	executed	once	

•  True	(if)	branch	 	or	 	False	(else)	branch	

9/12/16	 6	



Flowchart with only a True Branch 
•  An	if	statement	may	not	need	a	‘False’	(else)	branch	

9/12/16	 7	



Syntax 3.1: The if Statement 

9/12/16	 8	



Elevatorsim.py 

9/12/16	 9	



Our First Example 
•  Open	the	file:	

•  elevatorsim.py	
•  This	is	a	slightly	modified	program		

•  Run	the	program	
•  Try	a	value	that	is	less	that	13	

•  What	is	the	result?	
•  Run	the	program	again	with	a	value	that	is	greater	than	13	

•  What	is	the	result?	

•  What	happens	if	you	enter	13?	

9/12/16	 10	



Our First Example (2) 
•  Revised	Problem	Statement	(1):	

•  Check	the	input	entered	by	the	user:	
•  If	the	input	is	13,	set	the	value	to	14	and	print	a	message	
•  Modify	the	elevatorsim	program	to	test	the	input	

The	rela<onal	operator	for	equal	is	“==“	

•  Modified	Problem	Statement	(2)	
•  In	some	countries	the	number	14	is	considered	unlucky.	
•  What	is	the	revised	algorithm?	
•  Modify	the	elevatorsim	program	to	“skip”	both	the	13th	and	14th	
floor	

	

9/12/16	 11	



Compound Statements 
•  Some	constructs	in	Python	are	compound	statements.	

•  compound	statements	span	mul6ple	lines	and	consist	of	a	header	and	
a	statement	block	

The	if	statement	is	an	example	of	a	compound	statement	

•  Compound	statements	require	a	colon	“:”	at	the	end	of	the	header.	

•  The	statement	block	is	a	group	of	one	or	more	statements,	all	indented	
to	the	same	column	

•  The	statement	block	starts	on	the	line	a@er	the	header	and	ends	at	
the	first	statement	indented	less	than	the	first	statement	in	the	block	
	
If	you	use	PyCharm;	PyCharm	properly	indents	the	statement	block.	
at	the	end	of	the	block	enter	a	blank	line	and	wing	will	shi@	back	to	

the	first	column	in	the	current	block	

9/12/16	 12	



Compound Statements 
•  Statement	blocks	can	be	nested	inside	other	types	of	blocks	(we	will	
learn	about	more	blocks	later)		

•  Statement	blocks	signal	that	one	or	more	statements	are	part	of	a	
given	compound	statement	

•  In	the	case	of	the	if	construct	the	statement	block	specifies:	
•  The	instruc6ons	that	are	executed	if	the	condi6on	is	true	
•  Or	skipped	if	the	condi6on	is	false	

Statement	blocks	are	visual	cues	that	allow	you	to	follow	the	login	and	
flow	of	a	program	

9/12/16	 13	



Tips on Indenting Blocks 
•  Let	PyCharm	do	the	inden6ng	for	you…	

This	is	referred	to	as	“block	structured”	code.		Inden<ng	consistently	is	not	
only	syntac<cally	required	in	Python,	it	also	makes	code	much	easier	to	

follow.	

9/12/16	 14	



A Common Error 
•  Avoid	duplica6on	in	branches	
•  If	the	same	code	is	duplicated	in	each	branch	then	move	it	out	of	the	

if	statement.	

9/12/16	 15	



The Conditional Operator 
•  A	“shortcut”	you	may	find	in	exis6ng	code	

•  It	is	not	used	in	this	book	
•  The	shortcut	nota6on	can	be	used	anywhere	that	a	value	is	
expected	

	 Condition True branch False branch 

Complexity	is	BAD….	
This	“shortcut”	is	difficult	to	read	and	a	poor	programming	pracEce	

9/12/16	 16	



Relational Operators 
•  Every	if	statement	has	a	condi6on	

•  Usually	compares	two	values	with	an	operator	

	

9/12/16	 17	

if	floor	>	13	:	
	..	
if	floor	>=	

13	:	..	
if	floor	<	

13	:	..	
if	floor	<=	13	:	
			..	
if	floor	==	

13	:	..	
	



Assignment vs. Equality Testing 
•  Assignment:	makes	something	true.	

	floor	=	13	
	

if	floor	==	13	:	
	

9/12/16	 18	

•  Equality	tes6ng:	checks	if	something	is	true.	



Comparing Strings 
•  Checking	if	two	strings	are	equal	

	

if	name1	==	name2	:	
			print("The	strings	are	identical")	
	

if	name1	!=	name2	:	
			print("The	strings	are	not	identical")	
	

9/12/16	 19	

•  Checking	if	two	strings	are	not	equal	

	



Checking for String Equality (1) 
•  For	two	strings	to	be	equal,	they	must	be	of	the	same	length	and	
contain	the	same	sequence	of	characters:	

9/12/16	 20	



Checking for String Equality (2) 
•  If	any	character	is	different,	the	two	strings	will	not	be	equal:	

9/12/16	 21	



Relational Operator Examples (1) 

9/12/16	 22	



Relational Operator Examples (2) 

9/12/16	 23	



Another Example 
•  Open	the	file:	

•  compare.py	

•  Run	the	program	
•  What	are	the	results?	

9/12/16	 24	


