
Common Error (Floating Point, 2)
•  For	example,	the	following	code	mul6plies	the	square	root	of	2	by	
itself.		

•  Ideally,	we	expect	to	get	the	answer	2:	

r	=	math.sqrt(2.0)	
if	r	*	r	==	2.0	:	
			print("sqrt(2.0)	squared	is	2.0")	
else	:	
			print("sqrt(2.0)	squared	is	not	2.0	but",	r	*	r)	
	

Output:	
sqrt(2.0)	squared	is	not	2.0	but	2.0000000000000004	

9/14/16	 26	

The Use of EPSILON
•  Use	a	very	small	value	to	compare	the	difference	to	determine	if	
floa6ng-point	values	are	‘close	enough’	
•  The	magnitude	of	their	difference	should	be	less	than	some	
threshold		

•  Mathema6cally,	we	would	write	that	x	and	y	are	close	enough	if:	

EPSILON	=	1E-14	
r	=	math.sqrt(2.0)	
if	abs(r	*	r	-	2.0)	<	EPSILON	:	
			print("sqrt(2.0)	squared	is	approximately	2.0")	

9/14/16	 27	

Lexicographical Order
•  	To	compare	Strings	in	‘dic6onary’	like	order:	

string1	<	string2	

	

•  Notes	
•  	All	UPPERCASE	leWers	come	before	lowercase	

•  ‘space’	comes	before	all	other	printable	characters	

•  Digits	(0-9)	come	before	all	leWers	

•  See	Appendix	A	for	the	Basic	La6n	(ASCII)	Subset	of	Unicode	

9/14/16	 28	

Operator Precedence
•  The	comparison	operators	have	lower	precedence	than	arithme6c	
operators	
•  Calcula&ons	are	done	before	the	comparison	
•  Normally	your	calcula6ons	are	on	the	‘right	side’	of	the	comparison	
or	assignment	operator	

actualFloor	=	floor	+	1	
	
	
	

Calculations

if	floor	>	height	+	1	:	
	
	
	

9/14/16	 29	

Precedence
•  Precedence	is	similar	to	Algebra:	

•  PEMDAS	C	
•  Parenthesis,	Exponent,	Mul6ply/Divide,	Add/Subtract,	Comparisons	

9/14/16	 30	
Please	Excuse	My	Dear	Aunt	Sally’s	Cat	

A Third Example
•  The	university	bookstore	has	a	Kilobyte	Day	sale	every	October	24	
(10.24),	giving	an	8	percent	discount	on	all	computer	accessory	
purchases	if	the	price	is	less	than	$128,	and	a	16	percent	discount	if	
the	price	is	at	least	$128.	

9/14/16	 31	

Implementing an if Statement (1)

1) 	Decide	on	a	branching	condi6on	

9/14/16	 32	

2) 	Write	pseudocode	for	the	true	branch	

3)	 	Write	pseudocode	for	the	false	branch	

Implementing an if Statement (2)

4) 	Double-check	rela6onal	operators	
•  Test	values	below,	at,	and	above	the	comparison	(127,	128,	129)	

	

5) 	Remove	duplica6on	

	

9/14/16	 33	

6)	 	Test	both	branches	

Implementing an if Statement (3)
7.	 	Write	the	code	in	Python	

9/14/16	 34	

A Third Example
•  The	university	bookstore	has	a	Kilobyte	Day	sale	every	October	24	
(10.24),	giving	an	8	percent	discount	on	all	computer	accessory	
purchases	if	the	price	is	less	than	$128,	and	a	16	percent	discount	if	
the	price	is	at	least	$128.	

if	originalPrice	<	128	:	
			discountRate	=	0.92	
else	:	
			discountRate	=	0.84	
discountedPrice	=	discountRate	*	originalPrice	

9/14/16	 35	

The Sale Example
•  Open	the	file:	

•  sale.py	

•  Run	the	program	several	6me	using	different	values	
•  Use	values	less	than	128	
•  Use	values	greater	that	128	
•  Enter	128	

•  What	results	do	you	get?	

9/14/16	 36	

Nested Branches
•  You	can	nest	an	if	inside	either	branch	of	an	if	statement.		
•  Simple	example:		Ordering	drinks	

•  Ask	the	customer	for	their	drink	order	
•  if	customer	orders	wine	

•  Ask	customer	for	ID	
•  if	customer’s	age	is	21	or	over	

•  Serve	wine	
•  Else	

•  Politely	explain	the	law	to	the	customer	
•  Else	

•  Serve	customers	a	non-alcoholic	drink	

9/14/16	 37	

Flowchart of a Nested if
•  Nested	if-else	inside	true	branch	of	
an	if	statement.		
•  Three	paths	

Ask	for	order	

Wine?	 Check	ID	

>=	21?	 Serve	wine	

Read	law	

True

False True

Done	

False
Serve	non-
alcoholic	
drink	

9/14/16	 38	

Tax Example: nested ifs	
•  Four	outcomes	(branches)	

9/14/16	 39	

•  Single	
•  <=	32000	
•  >	32000	

•  Married	
•  	<=	64000	
•  >	64000	

Flowchart for the Tax Example

•  Four	branches	

9/14/16	 40	

Taxes.py (1)

9/14/16	 41	

Taxes.py (2)
•  The	‘True’	branch	(Single)	

•  Two	branches	within	this	branch	

9/14/16	 42	

Taxes.py (3)
•  The	‘False’	branch	(Married)	

9/14/16	 43	

Running the Tax Example
•  Open	the	file:	

•  taxes.py	

•  Run	the	program	several	6me	using	different	values	for	income	and	
marital	status	
•  Use	income	values	less	than	$32,000	
•  Use	income	values	greater	than	$64,000	
•  Enter	“&”	as	the	marital	status	

•  What	results	do	you	get?	

9/14/16	 44	

Hand-tracing
•  Hand-tracing	helps	you	understand	whether	a	program	works	correctly	

•  Create	a	table	of	key	variables	
•  Use	pencil	and	paper	to	track	their	values	

•  Works	with	pseudocode	or	code	
•  Track	loca6on	with	a	marker		

•  Use	example	input	values	that:	
•  You	know	what	the	correct	outcome	should	be	
•  Will	test	each	branch	of	your	code	

9/14/16	 45	

Hand-tracing the Tax Example
•  Setup	

•  Table	of	variables	
•  Ini6al	values	

9/14/16	 46	

Hand-tracing the Tax Example (2)

•  Input	variables	
•  From	user		
•  Update	table	

•  Because	marital	status	is	not	“s”	we	skip	to	the	else	on	line	25		

9/14/16	 47	

Hand-tracing the Tax Example (3)
•  Because	income	is	not	<=	64000,	we	move	to	the	else	clause	on	line	28	

•  Update	variables	on	lines	29	and	30	
•  Use	constants	

9/14/16	 48	

Incremental Code and Test
•  Implement	a	solu6on	to	one	input	

•  Test	it	

•  Add	a	solu6on	to	a	second	input	
•  Test	it	

•  Think	a	liWle	more	about	whether	there	is	a	clever	way	to	add	more	
solu6ons	

•  Add	solu6ons	incrementally	
•  Test	them	

•  It’s	okay	if	it	breaks	at	first	
•  Go	back	and	understand	why	it’s	breaking	
•  Code	doesn’t	work	for	a	specific	reason	–	it’s	not	arbitrary 		

9/14/16	 49	

Multiple Alternatives

9/14/16	 50	

3.4 Multiple Alternatives
•  What	if	you	have	more	than	two	branches?	

•  Count	the	branches	for	the	following	earthquake	effect	example:	
•  8	(or	greater)	
•  7	to	7.99	
•  6	to	6.99	
•  4.5	to	5.99	
•  Less	than	4.5	

When using multiple if statements,
test the general conditions after the
more specific conditions.

9/14/16	 51	

Flowchart of Multiway Branching

>=	8.0?	 Most	Structures	Fall	

True

False

>=	7.0?	 Many	Buildings	Destroyed	
True

False

>=	6.0?	
Many	buildings	considerably	damaged,	

some	collapse	

True

False

>=	4.5?	 Damage	to	poorly	constructed	buildings	
True

False

No	destruc6on	of	buildings	

9/14/16	 52	

elif Statement
•  Short	for	Else,	if…	
•  As	soon	as	one	on	the	test	condi6ons	succeeds,	the	statement	block	is	
executed	
•  No	other	tests	are	aWempted	

•  If	none	of	the	test	condi6ons	succeed	the	final	else	clause	is	executed	

9/14/16	 53	

if,	elif	Multiway Branching

9/14/16	 54	

if	richter	>=	8.0	:			#	Handle	the	‘special	case’	first	
			print("Most	structures	fall")	
elif	richter	>=	7.0	:	
			print("Many	buildings	destroyed")	
elif	richter	>=	6.0	:	
			print("Many	buildings	damaged,	some	collapse")	
elif	richter	>=	4.5	:	
			print("Damage	to	poorly	constructed	buildings")	
else	:				#	so	that	the	‘general	case’	can	be	handled	last	
			print("No	destruction	of	buildings")	

What is Wrong With This Code?

if	richter	>=	8.0	:		
			print("Most	structures	fall")	
if	richter	>=	7.0	:	
			print("Many	buildings	destroyed")	
if	richter	>=	6.0	:	
			print("Many	buildings	damaged,	some	collapse")	
if	richter	>=	4.5	:	
			print("Damage	to	poorly	constructed	buildings")	

9/14/16	 55	

earthquake Example
•  Open	the	file:	

•  earthquake.py	

•  Run	the	program	with	several	different	inputs	

9/14/16	 56	

Using Flowcharts to
Develop and Refine
Algorithms

9/14/16	 57	

3.5 Problem Solving: Flowcharts
•  You	have	seen	a	few	basic	flowcharts	
•  A	flowchart	shows	the	structure	of	decisions	and	tasks	to	solve	a	
problem	

•  Basic	flowchart	elements:	

	

	

Each	branch	of	a	decision	
can	contain	tasks	and	
further	decisions	

9/14/16	 58	

•  Connect	them	with	arrows	

•  But	never	point	an	arrow	inside	
another	branch!	

Using Flowcharts
•  Flowcharts	are	an	excellent	tool		
•  They	can	help	you	visualize	the	flow	of	your	algorithm	

•  	Building	the	flowchart	
•  Link	your	tasks	and	input	/	output	boxes	in	the	sequence	they	need	
to	be	executed	

•  When	you	need	to	make	a	decision	use	the	diamond	(a	condi6onal	
statement)	with	two	outcomes		

•  Never	point	an	arrow		inside	another	branch	

9/14/16	 59	

Conditional Flowcharts
Two	Outcomes	 	Mul6ple	Outcomes	

9/14/16	 60	

Shipping Cost flowchart
Shipping	costs	are	$5	inside	the	con6guous	the	United	States	(Lower	48	
states),	and	$10	to	Hawaii	and	Alaska.	Interna6onal	shipping	costs	are	
also	$10.	

•  Three	Branches:	

Interna6onal	
Branch	

Hawaii/Alaska	
Branch	

Lower	48	
Branch	

9/14/16	 61	

International
Branch

Hawaii/Alaska
Branch

Lower 48
Branch

Don’t Connect Branches!
Shipping	costs	are	$5	inside	the	United	States,	except	that	to	Hawaii	and	
Alaska	they	are	$10.	Interna6onal	shipping	costs	are	also	$10.	

• 	Don’t	do	this!	

9/14/16	 62	

Shipping Cost Flowchart
Shipping	costs	are	$5	inside	the	United	States,	except	that	to	Hawaii	and	
Alaska	they	are	$10.	Interna6onal	shipping	costs	are	also	$10.	

9/14/16	 63	

Shipping Example
•  Open	the	file:	

•  Shipping.py	

•  Run	the	program	with	several	different	inputs?	
•  What	happens	if	you	enter	“usa”	as	the	country?	

•  We	will	learn	several	ways	to	correct	the	code	later	in	this	
chapter	

9/14/16	 64	

Complex Decision Making is Hard
•  Computer	systems	are	used	to	help	sort	and	route	luggage	at	airports	

•  The	systems:	
•  Scan	the	baggage	tags	
•  Sorts	the	items	
•  Routes	the	items	to	conveyor	belts	
•  Humans	then	place	the	bags	on	trucks	

•  In	1993	Denver	built	a	new	airport	with	a	“state	of	the	art”		luggage	
system	that	replaced	the	human	operators	with	robo6c	carts	
•  The	system	failed	
•  The	airport	could	not	open	without	a	luggage	system	
•  The	system	was	replaced	(it	took	over	a	year)	
•  The	cost	was	almost	$1B….	(yes	one	billion…		1994	dollars)	
•  The	company	that	designed	the	system	went	bankrupt			

9/14/16	 65	

Building Test Cases

9/14/16	 66	

Problem Solving: Test Cases
•  Aim	for	complete	coverage	of	all	decision	points:	

•  There	are	two	possibili6es	for	the	marital	status	and	two	tax	
brackets	for	each	status,	yielding	four	test	cases	

•  Test	a	handful	of	boundary	condi6ons,	such	as	an	income	that	is	at	
the	boundary	between	two	tax	brackets,	and	a	zero	income	

•  If	you	are	responsible	for	error	checking	(which	is	discussed	in	
Sec6on	3.9),	also	test	an	invalid	input,	such	as	a	nega6ve	income	

•  Each	branch	of	your	code	should	be	covered	with	a	test	case	

9/14/16	 67	

Choosing Test Cases
•  Choose	input	values	that:	

•  Test	boundary	cases	and	0	values	
•  Test	each	branch	

9/14/16	 68	

Make a Schedule…
•  Make	a	reasonable	es6mate	of	the	6me	it	will	take	you	to:	

•  Design	the	algorithm	
•  Develop	test	cases	
•  Translate	the	algorithm	to	code	and	enter	the	code	
•  Test	and	debug	your	program	

•  Leave	some	extra	6me	for	unan6cipated	problems	

As	you	gain	more	experience	your	es&mates	will	become	more	
accurate.		It	is	be<er	to	have	some	extra	&me	than	to	be	late	

9/14/16	 69	

Boolean Variables and
Operators

9/14/16	 70	

Boolean Variables
•  Boolean	Variables	

•  A	Boolean	variable	is	oten	called	a	flag	because	it	can	be	either	up	
(true)	or	down	(false)	

•  boolean	is	a	Python	data	type	
•  failed	=	True	

•  Boolean	variables	can	be	either	True	or	False	
•  There	are	two	Boolean	Operators:		and,	or	

•  They	are	used	to	combine	mul6ple	condi6ons	

9/14/16	 71	

Combined Conditions: and	
•  Combining	two	condi6ons	is	oten	used	in	range	checking	

•  Is	a	value	between	two	other	values?	

•  Both	sides	of	the	and	must	be	true	for	the	result	to	be	true	

if	temp	>	0	and	temp	<	100	:		
			print("Liquid")	

9/14/16	 72	

Combined Conditions: or	
•  We	use	or	if	only	one	of	two	condi6ons	need	to	be	true	

•  Use	a	compound	condi6onal	with	an	or:	

•  If	either	condi6on	is	true	
•  The	result	is	true	

if	temp	<=	0	or	temp	>=	
100	:	

			print("Not	liquid")	

9/14/16	 73	

The not operator: not	
•  If	you	need	to	invert	a	boolean	variable	or	comparison,	precede	it	with	
not	

	

•  If	you	are	using	not,	try	to	use	simpler	logic:	

if	not	attending	or	grade	<	60	:		
			print("Drop?")	
	

if	attending	and	not(grade	<	60)	:		
			print("Stay")	

if	attending	and	grade	>=	60	:	
			print("Stay")		

9/14/16	 74	

The not operator: inequality !	
•  A	slightly	different	operator	is	used	for	the	not	when	checking	for	
inequality	rather	than	nega6on.	

•  Example	inequality:	
•  The	password	that	the	user	entered	is	not	equal	to	the	password	on	
file.	

•  if	userPassword	!=	filePassword	:	

9/14/16	 75	

and Flowchart
•  This	is	oten	called	‘range	checking’	

•  Used	to	validate	that	the	input	is	
between	two	values	

if	temp	>	0	and	temp	<	100	:	
			print("Liquid")		
	

9/14/16	 76	

or flowchart
•  Another	form	of	‘range	checking’	

•  Checks	if	value	is	outside	a	range	

if	temp	<=	0	or	temp	>=	100	:	
			print("Not	Liquid")	

9/14/16	 77	

Comparison Example
•  Open	the	file:	

•  Compare2.py	

•  Run	the	program	with	several	inputs	

9/14/16	 78	

Boolean Operator Examples

9/14/16	 79	

Common Errors with Boolean Conditions
Confusing	and	and	or	Condi6ons	

•  It	is	a	surprisingly	common	error	to	confuse	and	and	or	condi6ons.		
•  A	value	lies	between	0	and	100	if	it	is	at	least	0	and	at	most	100.		
•  It	lies	outside	that	range	if	it	is	less	than	0	or	greater	than	100.		

•  There	is	no	golden	rule;	you	just	have	to	think	carefully.	

9/14/16	 80	

Done!

Short-circuit Evaluation: and	
•  Combined	condi6ons	are	evaluated	from	let	to	right	

•  If	the	let	half	of	an	and	condi6on	is	false,	why	look	further?		

if	temp	>	0	and	temp	<	100	:		
			print("Liquid")	
	

9/14/16	 81	

Short-circuit evaluation: or	
•  If	the	let	half	of	the	or	is	true,	why	look	further?	

if	temp	<=	0	or	temp	>=	100	:		
			print("Not	Liquid")	

Done!

9/14/16	 82	

De Morgan’s law
•  De	Morgan’s	law	tells	you	how	to	negate	and	and	or	condi6ons:	

•  not(A	and	B)		is	the	same	as	 	(not	A)	or	(not	B)	
•  not(A	or	B)	 	is	the	same	as	 	(not	A)	and	(not	B)	

•  Example:		Shipping	is	higher	to	AK	and	HI	

•  To	simplify	condi6ons	with	nega6ons	of	and	or	or	expressions,	it’s	a	
good	idea	to	apply	De	Morgan’s	law	to	move	the	nega6ons	to	the	
innermost	level.	

if	(country	!=	"USA"		
			and	state	!=	"AK"		
			and	state	!=	"HI")	:	
			shippingCharge	=	20.00	

if	not(country=="USA"	
		or	state=="AK"	
		or	state=="HI")	:	

shippingCharge	=	20.00	

9/14/16	 83	

Analyzing Strings

9/14/16	 84	

Analyzing Strings – The in Operator
•  Some6mes	it’s	necessary	to	analyze	or	ask	certain	ques6ons	about	a	
par6cular	string.	
•  Some6mes	it	is	necessary	to	determine	if	a	string	contains	a	given	
substring.	That	is,	one	string	contains	an	exact	match	of	another	
string.	

•  Given	this	code	segment,	
name	=	"John	Wayne"	

•  the	expression	
"Way"	in	name	

•  yields	True	because	the	substring	"Way"	occurs	within	the	string	
stored	in	variable	name.	

•  The	not	in	operator	is	the	inverse	on	the	in	operator	

9/14/16	 85	

Substring: Suffixes
•  Suppose	you	are	given	the	name	of	a	file	and	need	to	ensure	that	it	
has	the	correct	extension	

if	filename.endswith(".html")	:	

			print("This	is	an	HTML	file.")	

•  The	endswith()	string	method	is	applied	to	the	string	stored	in	
filename	and	returns	True	if	the	string	ends	with	the	substring	
".html"	and	False	otherwise.	

9/14/16	 86	

Operations for Testing Substrings

9/14/16	 87	

Methods: Testing String Characteristics (1)

9/14/16	 88	

Methods for Testing String Characteristics (2)

9/14/16	 89	

Comparing and Analyzing Strings (1)

9/14/16	 90	

Comparing and Analyzing Strings (2)

9/14/16	 91	

Substring Example
•  Open	the	file:	

•  Substrings.ph	

•  Run	the	program	and	test	several	strings	and	substrings	

9/14/16	 92	

Input Validation

9/14/16	 93	

Input Validation
•  Accep6ng	user	input	is	dangerous	

•  Consider	the	Elevator	program:	
•  Assume	that	the	elevator	panel	has	buWons	labeled	1	through	20	
(but	not	13).	

9/14/16	 94	

Input Validation
•  The	following	are	illegal	inputs:	

•  The	number	13	

if	floor	==	13	:	
				print("Error:	There	is	no	thirteenth	floor.")	

if	floor	<=	0	or	floor	>	20	:	
				print("Error:	The	floor	must	be	between	1	and	20.")	

9/14/16	 95	

•  Zero	or	a	nega6ve	number	
•  A	number	larger	than	20	

	
•  An	input	that	is	not	a	sequence	of	digits,	such	as	five:	

•  Python’s	excep6on	mechanism	is	needed	to	help	verify	integer	
and	floa6ng	point	values	(Chapter	7).	

Elevatorsim2.py

9/14/16	 96	

Elevator Simulation
•  Open	the	file:	

•  elevatorsim2.py	

•  Test	the	program	with	a	range	of	inputs	including:	
•  12	
•  14	
•  13	
•  -1	
•  0	
•  23	
•  19	

9/14/16	 97	

Chapter Three Review

9/14/16	 98	

Summary: if Statement
•  The	if	statement	allows	a	program	to	carry	out	different	ac6ons	
depending	on	the	nature	of	the	data	to	be	processed.	

•  Rela6onal	operators	(<	<=	>	>=	==	!=)	are	used	to	compare	
numbers	and	Strings.	

•  Strings	are	compared	in	lexicographic	order.	

•  Mul6ple	if	statements	can	be	combined	to	evaluate	complex	
decisions.	

•  When	using	mul6ple	if	statements,	test	general	condi6ons	ater	more	
specific	condi6ons.	

9/14/16	 99	

Summary: Flowcharts and Testing
•  When	a	decision	statement	is	contained	inside	the	branch	of	another	
decision	statement,	the	statements	are	nested.	

•  Nested	decisions	are	required	for	problems	that	have	two	levels	of	
decision	making.	

•  Flow	charts	are	made	up	of	elements	for	tasks,	input/output,	and	
decisions.	

•  Each	branch	of	a	decision	can	contain	tasks	and	further	decisions.	

•  Never	point	an	arrow	inside	another	branch.	
•  Each	branch	of	your	program	should	be	covered	by	a	test	case.	

•  It	is	a	good	idea	to	design	test	cases	before	implemen6ng	a	program.	

9/14/16	 100	

Summary: Boolean
•  The	type	boolean	has	two	values,	true	and	false.	

•  Python	has	two	Boolean	operators	that	combine	condi6ons:	and	
and	or.	

•  To	invert	a	condi6on,	use	the	not	operator.		
•  When	checking	for	equality	use	the	!	operator.	
•  The	and	and	or	operators	are	computed	lazily:		

•  As	soon	as	the	truth	value	is	determined,	no	further	condi6ons	are	
evaluated.	

•  De	Morgan’s	law	tells	you	how	to	negate	and	and	or	condi6ons.	

9/14/16	 101	

