
Common Loop
Algorithms

9/21/16 42

Common Loop Algorithms
1.  Sum	and	Average	Value	

2.  Coun4ng	Matches	

3.  Promp4ng	un4l	a	Match	Is	Found	

4. Maximum	and	Minimum	

5.  Comparing	Adjacent	Values	

43 9/21/16

Sum Example
•  Sum	of	Values	

•  Ini4alize	total	to	0	
•  Use	while	loop	with	sen4nel	

total	=	0.0	
inputStr	=	input("Enter	value:	")	
while	inputStr	!=	""	:	
			value	=	float(inputStr)	
			total	=	total	+	value	
			inputStr	=	input("Enter	value:	")	
	

44 9/21/16

Average Example
total	=	0.0	
count	=	0	
inputStr	=	input("Enter	value:	")	
while	inputStr	!=	""	:	
			value	=	float(inputStr)	
			total	=	total	+	value	
			count	=	count	+	1	
			inputStr	=	input("Enter	value:	")	
	
if	count	>	0	:		
			average	=	total	/	count	
else	:	
			average	=	0.0	

Average	of	Values	

•  First	total	the	values	
•  Ini4alize	count	to	0	

•  Increment	per	input	

•  Check	for	count	0	

•  Before	divide!	

45 9/21/16

Counting Matches (e.g., Negative
Numbers)

negatives	=	0	
inputStr	=	input("Enter	value:	")	
while	inputStr	!=	"“	:	
			value	=	int(inputStr)	
			if	value	<	0	:	
						negatives	=	negatives	+	1	
			inputStr	=	input("Enter	value:	")	
	
print("There	were",	negatives,	
"negative	values.")	

•  Coun4ng	Matches	

•  Ini4alize	nega4ves	to	0	
•  Use	a	while	loop	
•  Add	to	nega4ves	per	
match	

46 9/21/16

Prompt Until a Match is Found
•  Ini4alize	boolean	flag	to	False	
•  Test	sen4nel	in	while	loop	

•  Get	input,	and	compare	to	range	
•  If	input	is	in	range,	change	flag	to	True	
•  Loop	will	stop	execu4ng	

valid	=	False	
while	not	valid	:	
			value	=	int(input("Please	enter	a	positive	value	<	100:	"))	
			if	value	>	0	and	value	<	100	:	
						valid	=	True	
			else	:	
						print("Invalid	input.")	

47

This	is	an	excellent	way	to	validate	use	provided	inputs	

9/21/16

Maximum
•  Get	first	input	value	

•  By	defini4on,	this	is	the	largest	that	you	have	seen	so	far		

•  Loop	while	you	have	a	valid	number	(non-sen4nel)	
•  Get	another	input	value	
•  Compare	new	input	to	largest	(or	smallest)	
•  Update	largest	if	necessary	

largest	=	int(input("Enter	a	value:	"))	
inputStr	=	input("Enter	a	value:	")	
while	inputStr	!=	””:	
			value	=	int(inputStr)	
			if	value	>	largest	:	
						largest	=	value	
			inputStr	=	input("Enter	a	value:	")	

48 9/21/16

Minimum
•  Get	first	input	value	

•  This	is	the	smallest	that	you	have	seen	so	far!		

•  Loop	while	you	have	a	valid	number	(non-sen4nel)	
•  Get	another	input	value	
•  Compare	new	input	to	largest	(or	smallest)	
•  Update	smallest	if	necessary	

smallest	=	int(input("Enter	a	value:	"))	
inputStr	=	input("Enter	a	value:	")	
while	inputStr	!=	"“	:	
			value	=	int(inputStr)	
			if	value	<	smallest	:	
						smallest	=	value	
			inputStr	=	input("Enter	a	value:	")	

49 9/21/16

Comparing Adjacent Values
•  Get	first	input	value		
•  Use	while	to	determine	if	there	are	more	to	check	

•  Copy	input	to	previous	variable	
•  Get	next	value	into	input	variable	
•  Compare	input	to	previous,	and	output	if	same	

value	=	int(input("Enter	a	value:	"))	
inputStr	=	input("Enter	a	value:	")	
while	inputStr	!=	"“	:	
			previous	=	value	
			value	=	int(inputStr)	
			if	value	==	previous	:	
						print("Duplicate	input")	
			inputStr	=	input("Enter	a	value:	")	

50 9/21/16

Grades Example
•  Open	the	file:	

•  Grades.py	

•  Look	carefully	at	the	source	code.	
•  The	maximum	possible	score	is	read	as	user	input	

•  There	is	a	loop	to	validate	the	input	

•  The	passing	grade	is	computed	as	60%	of	the	available	points	

51 9/21/16

The for Loop

9/21/16 52

The for Loop
•  Uses	of	a	for	loop:	

•  The	for	loop	can	be	used	to	iterate	over	the	contents	of	any	
container.	

•  A	container	is	an	object	(Like	a	string)	that	contains	or	stores	a	
collec4on	of	elements		

•  A	string	is	a	container	that	stores	the	collec4on	of	characters	in	the	
string	

53 9/21/16

while loop -> for loop

stateName	=	"Virginia"	
i	=	0	
while	i	<	len(stateName)	:	
			letter	=	stateName[i]	
			print(letter)	
			i	=	i	+	1	

while	version	

54 9/21/16

while loop -> for loop

stateName	=	"Virginia"	
i	=	0	
while	i	<	len(stateName)	:	
			letter	=	stateName[i]	
			print(letter)	
			i	=	i	+	1	

while	version	

stateName	=	"Virginia"	
for	letter	in	stateName	:	
			print(letter)	

for	version	

55 9/21/16

while loop -> for loop

stateName	=	"Virginia"	
i	=	0	
while	i	<	len(stateName)	:	
			letter	=	stateName[i]	
			print(letter)	
			i	=	i	+	1	

while	version	

stateName	=	"Virginia"	
for	letter	in	stateName	:	
			print(letter)	

for	version	

•  Note	an	important	difference	between	the	while	loop	and	the	for	loop.		
•  In	the	while	loop,	the	index	variable	i	is	assigned	0,	1,	and	so	on.		
•  In	the	for	loop,	the	element	variable	is	assigned	stateName[0],	
stateName[1],	and	so	on.		

56 9/21/16

The for Loop (2)
•  Uses	of	a	for	loop:	

•  A	for	loop	can	also	be	used	as	a	count-controlled	loop	that	iterates	
over	a	range	of	integer	values.	

i	=	1	
while	i	<	10	:	
			print(i)	
			i	=	i	+	1	

for	i	in	range(1,	10)	:		
			print(i)	

while version

for version

57 9/21/16

Syntax of a for Statement (Container)
•  Using	a	for	loop	to	iterate	over	the	contents	of	a	container,	an	element	
at	a	4me.		

58 9/21/16

Syntax of a for Statement (Range)
•  You	can	use	a	for	loop	as	a	count-controlled	loop	to	iterate	over	a	
range	of	integer	values	

•  We	use	the	range	func4on	for	genera4ng	a	sequence	of	integers	that	
less	than	the	argument	that	can	be	used	with	the	for	loop		

59 9/21/16

Planning a for Loop
•  Print	the	balance	at	the	end	of	each	year	for	a	
number	of	years	

60 9/21/16

Good Examples of for Loops
•  Keep	the	loops	simple!	

61 9/21/16

Investment Example

62 9/21/16

Programming Tip
•  Finding	the	correct	lower	and	upper	bounds	for	a	loop	can	be	
confusing.		
•  Should	you	start	at	0	or	at	1?		
•  Should	you	use	<=	b	or	<	b	as	a	termina4on	condi4on?	

•  Coun4ng	is	easier	for	loops	with	asymmetric	bounds.	
•  The	following	loops	are	executed	b	-	a	4mes.	

int	i	=	a	
while	i	<	b	:	
			.	.	.	
			i	=	i	+	1	

for	i	in	range(a,	b)	:	
			.	.	.	
	

63 9/21/16

Programming Tip
•  The	loop	with	symmetric	bounds	(“<=”,	is	executed	b	-	a	+	1	4mes.		

•  That	“+1”	is	the	source	of	many	programming	errors.	

i	=	a	
while	i	<=	b	:	
			.	.	.	
			i	=	i	+	1	

#	For		this	version	of	the	loop	the	
‘+1’	is	very	noticeable!	
for	year	in	range(1,	numYears	+	1)	:	

64 9/21/16

Summary of the for Loop
•  for	loops	are	very	powerful	
•  The	for	loop	can	be	used	to	iterate	over	the	contents	of	any	container,	
which	is	an	object	that	contains	or	stores	a	collec4on	of	elements		
•  a	string	is	a	container	that	stores	the	collec4on	of	characters	in	the	string.	

•  A	for	loop	can	also	be	used	as	a	count-controlled	loop	that	iterates	
over	a	range	of	integer	values.	

65 9/21/16

Steps to Writing a Loop
•  Planning:	

•  Decide	what	work	to	do	inside	the	loop	
•  Specify	the	loop	condi4on	
•  Determine	loop	type	
•  Setup	variables	before	the	first	loop	
•  Process	results	when	the	loop	is	finished	
•  Trace	the	loop	with	typical	examples	

•  Coding:	
•  Implement	the	loop	in	Python	

66 9/21/16

A Special Form of the print
Function

•  Python	provides	a	special	form	of	the	print	func4on	that	does	not	start	
a	new	line	ajer	the	arguments	are	displayed	

•  This	is	used	when	we	want	to	print	items	on	the	same	line	using	
mul4ple	print	statements	

•  For	example	the	two	statements:	

print(“00”,	end=””)	
print(3	+	4)	

•  Produce	the	output:	
007	

•  Including	end=“”	as	the	last	argument	to	the	print	func4on	prints	an	
empty	string	ajer	the	arguments,	instead	on	a	new	line	

•  The	output	of	the	next	print	func4on	starts	on	the	same	line	

9/21/16 67

Nested Loops

9/21/16 68

Loops Inside of Loops
•  In	Chapter	Three	we	learned	how	to	nest	if	statements	to	allow	us	to	
make	complex	decisions	
•  Remember	that	to	nest	the	if	statements	we	need	to	indent	the	
code	block		

•  Complex	problems	some4mes	require	a	nested	loop,	one	loop	nested	
inside	another	loop	
•  The	nested	loop	will	be	indented	inside	the	code	block	of	the	first	
loop	

•  A	good	example	of	using	nested	loops	is	when	you	are	processing	cells	
in	a	table	
•  The	outer	loop	iterates	over	all	of	the	rows	in	the	table	
•  The	inner	loop	processes	the	columns	in	the	current	row	

9/21/16 69

Our Example Problem Statement
•  Print	a	Table	Header	that	contains	x1,	x2,	x3,	and	x4		
•  Print	a	Table	with	four	columns	and	ten	rows	that	contain	the	powers	
of	x1,	x2,	x3,	and	x4	for	x	=	1	to	10		

9/21/16 70

Applying Nested Loops
•  How	would	you	print	a	table	with	rows	and	columns?	

•  Print	top	line	(header)	
•  Use	a	for	loop	

•  Print	table	body…	
•  How	many	rows	are	in	the	table?	
•  How	many	columns	in	the	table?	

•  Loop	per	row	
•  Loop	per	column	

•  In	our	example	there	are:	
•  Four	columns	in	the	table	
•  Ten	rows	in	the	table	

9/21/16 71

Pseudocode to Print the Table
Print	the	table	header	

for	x	from	1	to	10	
print	a	new	table	row	
print	a	new	line	
	

•  How	do	we	print	a	table	row?	

For	n	from	1	to	4	
print	xn	

•  We	have	to	place	this	loop	inside	the	preceding	loop	
•  The	inner	loop	is	“nested”	inside	the	outer	loop	

9/21/16 72

Pseudocode to Print the Table
Print	the	table	header:	

for	x	from	1	to	10	
for	n	from	1	to	4	
print	Xn	

print	a	new	line	
	

9/21/16 73

n !

x
!

Inner	Loop	

Flowchart of a Nested Loop
x	=	1	

x	<=	
10?	 n=	1	

n	<=	
4?	 Print	xn	

n	=	n	+	1	

Print	new	line	

x	=	x	+	1	

True

False True

Done	

False

9/21/16 74

Powertable.py

9/21/16 75

Body	of	outer	loop,	x	=	1	!	10	

Body	of	inner	loop,	n	=	1	!	4	

The end=“” suppresses the new
line, so the numbers are all
printed on the same line

The Results

9/21/16 76

First Exercise
•  Open	the	program:	

•  powertable.py	

•  Run	the	program	and	review	the	results	

•  Make	the	following	changes:	
•  Change	the	value	of	NMAX	to	6	and	run	the	program	
•  What	changes	in	the	table?	
•  Change	the	value	of	NMAX	back	to	4	
•  Change	the	value	of	XMAX	to	4	
•  What	changes	in	the	table?	

9/21/16 77

Nested Loop Examples

9/21/16 78

Hand Tracing the Loop

•  i	will	have	the	values:	
•  0,	1,	2,	3	–	So	we	will	have	four	lines	of	
stars	

•  j	will	have	the	values	
•  0	-	So	we	will	have	one	star	
•  0,	1	-	So	we	will	have	two	stars	
•  0,	1,	2	-	So	we	will	have	three	stars	
•  0,	1,	2,	3	-	So	we	will	have	four	stars	

9/21/16 79

Nested Loop Examples (2)

9/21/16 80

Second Problem Statement
•  Print	the	following	papern	of	brackets:	
[][][][]	
[][][][]	
[][][][]	

•  The	papern	consists	of:	
•  Three	rows	
•  Each	row	has	four	pairs	of	brackets	

•  What	do	we	know?	
•  We	need	two	nested	loops	

•  The	first	loop	(the	outer	loop)	will	print	each	of	the	three	rows	
•  The	second	loop	(the	inner	loop)	will	print	the	four	pairs	of	
brackets	

9/21/16 81

Pseudocode Code, Results
For	i	=	1	to	3	
For	j	=	1	to	4	
Print	“[]”	

Print	a	new	line	

9/21/16 82

Exam Averages Problem Statement
•  It	is	common	to	repeatedly	read	and	process	mul4ple	groups	of	values:	

•  Write	a	program	that	can	compute	the	average	exam	grade	for	
mul4ple	students.	

•  Each	student	has	the	same	number	of	exam	grades	
•  Prompt	the	user	for	the	number	of	exams	
•  When	you	finish	a	student	prompt	the	user	to	see	if	there	are	more	
students	to	process	

•  What	do	we	know?	

•  What	do	we	need	to	compute?	

•  What	is	our	algorithm	/	approach?	

9/21/16 83

Step One: Understand the Problem
•  To	compute	the	average	grade	for	a	student,	we	must	read	and	tally	all	
of	the	grades	for	that	student	
•  We	can	use	a	loop	to	do	this.	(we	have	working	code	to	do	this	
por8on)	

•  We	need	to	compute	grades	for	mul4ple	students	
•  That	implies	a	set	of	nested	Loops	

•  The	outer	loop	processes	each	student	
•  The	inner	loop	process	the	student’s	grades	

9/21/16 84

Step Two
•  Compute	the	grade	for	one	student	

•  Set	up	the	variables	and	loop		

•  We	know	how	many	grades	to	process,	so	we	can	use	a	count-
controlled	loop	

total	score	=	0	
For	i	in	range	(1,	number	of	exams	+	1)	:	
Read	the	next	exam	score	
Add	the	exam	score	to	the	total	score	

Compute	the	exam	average	
Print	the	exam	average	

9/21/16 85

Step Three
•  Repeat	the	process	for	each	student	
•  Since	we	don’t	know	how	many	students		there	are,	we	will	use	a	
while	loop	with	a	sen4nel	value	
•  For	simplicity	we	will	use	“Y”	as	the	sen4nel	value	

9/21/16 86

Step Four: Translate to Python

9/21/16 87

Exam Averages Example
•  Open	the	file:	

•  examaverages.py	

•  No4ce	that	the	second	loop		(the	for	loop)	is	nested	inside	the	while	loop	
•  In	Wing	you	should	see	a	line	(the	indent	guide)	connec4ng	the	for	loop	
on	line	17	down	to	the	statement	on	line	21	
•  The	line	is	showing	you	the	statements	that	are	included	in	the	for	loop	

•  If	you	don’t	see	the	indent	guide:	
•  Click	on	the	edit	tab	
•  Select	“Preferences…”	
•  Under	Editor,	select	Inden4on	
•  Click	the	“Show	Indent	Guides”	box	
•  Click	the	Apply	bupon	
•  Click	the	Okay	Bupon	

9/21/16 88

Turning the Indent Guides On

9/21/16 89

Application: Random
Numbers and Simulations

9/21/16 90

Random Numbers/Simulations
•  Games	ojen	use	random	numbers	to	make	things	interes4ng	

•  Rolling	Dice	
•  Spinning	a	wheel	
•  Pick	a	card	

•  A	simula4on	usually	involves	looping	through	a	sequence	of	events	
•  Days	
•  Events	

9/21/16 91

Generating Random Numbers
•  The	Python	library	has	a	random	number	generator	that	produces	
numbers	that	appear	to	be	random	
•  The	numbers	are	not	completely	random.		The	numbers	are	drawn	
from	a	sequence	of	numbers	that	does	not	repeat	for	a	long	4me	

•  random()	returns	a	number	that	is	>=	0	and	<	1	

9/21/16 92

Simulating Die Tosses
•  Goal:	

•  To	generate	a	random	integer	in	a	given	range	we	use	the	randint()	
func4on	

•  Randint	has	two	parameters,	the	range	(inclusive)	of	numbers	
generated	

9/21/16 93

