
Chapter Five: Functions

Chapter Goals
•  To	be	able	to	implement	func0ons	
•  To	become	familiar	with	the	concept	of	parameter	passing	
•  To	develop	strategies	for	decomposing	complex	tasks	into	simpler	ones	
•  To	be	able	to	determine	the	scope	of	a	variable	
•  To	learn	how	to	think	recursively	

In	this	chapter,	you	will	learn	how	to	design	and	implement	your	own	
func7ons		

Using	the	process	of	stepwise	refinement,	you	will	be	able	to	break	up	
complex	tasks	into	sets	of	coopera7ng	func7ons	

9/23/16 Page 2

Contents
•  Func0ons	as	Black	Boxes	
•  Implemen0ng	and	Tes0ng	Func0ons	
•  Parameter	Passing	
•  Return	Values	
•  Func0ons	without	Return	Values	
•  Reusable	Func0ons	
•  Stepwise	Refinement	
•  Variable	Scope	
•  Graphics:		Building	an	Image	Processing	Toolkit	
•  Recursive	Func0ons	

9/23/16 Page 3

Functions as Black Boxes
SECTION 5.1

9/23/16 Page 4

Functions as Black Boxes
•  A	func0on	is	a	sequence	of	instruc0ons	with	a	name	

•  For	example,	the	round	func0on,	which	was	introduced	in	Chapter	2,	
contains	instruc0ons	to	round	a	floa0ng-point	value	to	a	specified	
number	of	decimal	places	

9/23/16 Page 5

Calling Functions
•  You	call	a	func0on	in	order	to	execute	its	instruc0ons	
price	=	round(6.8275,	2)	#	Sets	result	to	6.83	

•  By	using	the	expression	round(6.8275,	2),	your	program	calls	the	
round	func0on,	asking	it	to	round	6.8275	to	two	decimal	digits	
	

	

9/23/16 Page 6

Calling Functions (2)
•  The	round	func0on	returns	its	result	back	to	where	the	func0on	was	
called	and	your	program	resumes	execu0on	

9/23/16 Page 7

Function Arguments
•  When	another	func0on	calls	the	round	func0on,	it	provides	“inputs”,	
such	as	the	values	6.8275	and	2	in	the	call	round(6.8275,	2)		

•  These	values	are	called	the	arguments	of	the	func0on	call	
•  Note	that	they	are	not	necessarily	inputs	provided	by	a	human	user		
•  They	are	the	values	for	which	we	want	the	func0on	to	compute	a	
result	

9/23/16 Page 8

Function Arguments
•  Func0ons	can	receive	mul0ple	arguments	or	it	is	also	possible	to	have	
func0ons	with	no	arguments	

9/23/16 Page 9

Function Return Values
•  The	“output”	that	the	round	func0on	computes	is	called	the	return	
value	

•  Func0ons	return	only	one	value	
•  The	return	value	of	a	func0on	is	returned	to	the	point	in	your	program	
where	the	func0on	was	called	

price	=	round(6.8275,	2)	

•  When	the	round	func0on	returns	its	result,	the	return	value	is	stored	
in	the	variable	‘price’	statement)	

9/23/16 Page 10

Function Return Values (2)
•  Do	not	confuse	returning	a	value	with	producing	program	output	
which	is	produced	when	using	a	print()	statement	

9/23/16 Page 11

Black Box Analogy
•  A	thermostat	is	a	‘black	box’	

•  Set	a	desired	temperature	
•  Turns	on	heater/AC	as	required	
•  You	don’t	have	to	know	how	it	really	works!	

•  How	does	it	know	the	current	temp?	
•  What	signals/commands	does	it	send	to	the	heater	or	A/C?	

•  Use	func0ons	like	‘black	boxes’	
•  Pass	the	func0on	what	it	needs	to	do	its	job	
•  Receive	the	answer	

9/23/16 Page 12

The round Function as a Black Box
•  You	pass	the	round	func0on	its	necessary	arguments	(6.8275	&	2)	and	
it	produces	its	result	(6.83)	

9/23/16 Page 13

The round Function as a Black Box
•  You	may	wonder	how	the	round	func0on	performs	its	job		

•  As	a	user	of	the	func0on,	you	don’t	need	to	know	how	the	func0on	is	
implemented	

•  You	just	need	to	know	the	specifica0on	of	the	func0on:		
•  If	you	provide	arguments	x	and	n,	the	func0on	returns	x	rounded	to	
n	decimal	digits	

9/23/16 Page 14

Designing Your Own Functions
•  When	you	design	your	own	func0ons,	you	will	want	to	make	them	
appear	as	black	boxes	to	other	programmers	
•  Even	if	you	are	the	only	person	working	on	a	program,	making	each	
func0on	into	a	black	box	pays	off:	there	are	fewer	details	that	you	
need	to	keep	in	mind	

9/23/16 Page 15

Implementing and Testing
Functions
SECTION 5.2

9/23/16 Page 16

Implementing and Testing Functions
•  A	func0on	to	calculate	the	volume	of	a	cube	

•  What	does	it	need	to	do	its	job?	
•  What	does	it	answer	with?	

•  When	wri0ng	(‘defining’)	this	func0on	
•  Pick	a	name	for	the	func0on	(cubeVolume)	
•  Declare	a	variable	for	each	incoming	argument	
		(sideLength)	(called	parameter	variables)	

•  Put	all	this	informa0on	together	along	with	the	def	keyword	to	form	
the	first	line	of	the	func0on’s	defini0on:	

9/23/16 Page 17

def	cubeVolume(sideLength):	
This line is called the header of
the function

Testing a Function
•  If	you	run	a	program	containing	just	the	func0on	defini0on,	then	
nothing	happens	
•  Afer	all,	nobody	is	calling	the	func0on	

•  In	order	to	test	the	func0on,	your	program	should	contain	
•  The	defini0on	of	the	func0on	
•  Statements	that	call	the	func0on	and	print	the	result	

9/23/16 Page 18

Calling/Testing the Cube Function

def	cubeVolume(sideLength)	:	
				volume	=	sideLength	**	3	
				return	volume	
	

result1	=	cubeVolume(2)	
result2	=	cubeVolume(10)	
print("A	cube	with	side	length	2	has	volume",	result1)	
print("A	cube	with	side	length	10	has	volume",	result2)	

Implementing the function (function definition)

Calling/testing the function

9/23/16 Page 19

Syntax: Function Definition

9/23/16 Page 20

Programming Tip: Function
Comments
•  Whenever	you	write	a	func0on,	you	should	comment	its	behavior		

•  Remember,	comments	are	for	human	readers,	not	compilers	(sort	of)	

##	Computes	the	volume	of	a	cube.	
#	@param	sideLength	the	length	of	a	side	of	the	cube	
#	@return	the	volume	of	the	cube	
#	
def	cubeVolume(sideLength)	:	
				volume	=	sideLength	**	3	
				return	volume	

Function comments explain the purpose of the function, the
meaning of the parameter variables and the return value, as

well as any special requirements

9/23/16 Page 21

Cubes.py with Documentation

9/23/16 Page 22

Cubes.py
•  Open	the	file	Cubes.py	in	PyCharm	

•  The	files	contains	to	func0ons:	
•  main	
•  cubeVolume	

•  Line	20	contains	the	call	to	the	func0on	“main”	

9/23/16 Page 23

The main Function
•  When	defining	and	using	func0ons	in	Python,	it	is	good	programming	
prac0ce	to	place	all	statements	into	func0ons,	and	to	specify	one	
func0on	as	the	star0ng	point	

•  Any	legal	name	can	be	used	for	the	star0ng	point,	but	we	chose	‘main’	
since	it	is	the	required	func0on	name	used	by	other	common	
languages	

•  Of	course,	we	must	have	one	statement	in	the	program	that	calls	the	
main	func0on	

9/23/16 Page 24

Syntax: The main Function

9/23/16 Page 25

Using Functions: Order (1)
•  It	is	important	that	you	define	any	func0on	before	you	call	it		

•  For	example,	the	following	will	produce	a	compile-0me	error:	

print(cubeVolume(10))	
def	cubeVolume(sideLength)	:	
				volume	=	sideLength	**	3	
				return	volume	

•  The	compiler	does	not	know	that	the	cubeVolume	func0on	will	be	
defined	later	in	the	program	

9/23/16 Page 26

Using Functions: Order (2)
•  However,	a	func0on	can	be	called	from	within	another	func0on	before	
the	former	has	been	defined		

•  The	following	is	perfectly	legal:	
def	main()	:	
				result	=	cubeVolume(2)	
				print("A	cube	with	side	length	2	has	volume",		
						result)	
	
def	cubeVolume(sideLength)	:	
				volume	=	sideLength	**	3	
				return	volume	
	
main()	

9/23/16 Page 27

Parameter Passing
SECTION 5.3

9/23/16 Page 28

Parameter Passing
•  Parameter	variables	receive	the	argument	values	supplied	in	the	
func0on	call	

•  The	argument	value	may	be:	
•  The	contents	of	a	variable	
•  A	‘literal’	value	(2)	

•  Aka,	‘actual	parameter’	or	argument	

•  The	parameter	variable	is:	

•  Declared	in	the	called	func0on		
•  Ini0alized	with	the	value	of	the	argument	value		

•  Used	as	a	variable	inside	the	called	func0on	
•  Aka,	‘formal	parameter’		

	

9/23/16 Page 29

Argument value

Parameter variable

o
u
t	

Called	func0on	

Calling	func0on	

in	

Parameter Passing Steps
result1	=	cubeVolume(2)	

def	cubeVolume(sideLength):	
			volume	=	sideLength	*	3	
			return	volume	
	

9/23/16 Page 30

Common Error 5.1
•  Trying	to	modify	parameter	variables	

•  A	copy	of	the	argument	values	is	passed	(the	Value	is	passed)	
•  Called	func0on	(addTax)	can	modify	local	copy	(price)	

9/23/16 Page 31

def	addTax(price,	rate):	
			tax	=	price	*	rate	/	100	
			#	No	effect	outside	the	function	
			price	=	price	+	tax		
			return	tax;	
	

total	=	10	
addTax(total,							7.5);		
	

10.0	

10.75	

total	

price	

copy	

Programming Tip 5.2
•  Do	not	modify	parameter	variables	

def	totalCents(dollars,	cents)	:	
				cents	=	dollars	*	100	+	cents	#	Modifies	parameter	variable.	
				return	cents	

Many	programmers	find	this	
prac0ce	confusing	

def	totalCents(dollars,	cents)	:	
				result	=	dollars	*	100	+	cents	
				return	result	

To	avoid	the	confusion,	simply	
introduce	a	separate	variable:	

9/23/16 Page 32

Return Values
SECTION 5.4

9/23/16 Page 33

Return Values
•  Func0ons	can	(op0onally)	return	one	value	

•  Add	a	return	statement	that	returns	a	value	

•  A	return	statement	does	two	things:	
1)  Immediately	terminates	the	func0on	

2)  Passes	the	return	value	back	to	the	calling	func0on	

9/23/16 Page 34

def	cubeVolume	(sideLength):	
			volume	=	sideLength	*	3	
			return	volume	
	

return	statement	

The	return	value	may	be	a	value,	a	variable	or	a	calcula7on	

Multiple return Statements
•  A	func0on	can	use	mul0ple	return	statements	

•  But	every	branch	must	have	a	return	statement	

9/23/16 Page 35

def	cubeVolume(sideLength):	
		if	(sideLength	<	0):		
					return	0		
		return	sideLength	*	3	
	

Multiple return Statements (2)
•  Alterna0ve	to	mul0ple	returns	(e.g.,	one	for	each	branch):	

•  You	can	avoid	mul0ple	returns	by	storing	the	func0on	result	in	a	variable	
that	you	return	in	the	last	statement	of	the	func0on		

•  For	example:	

9/23/16 Page 36

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0:	
								volume	=	sideLength	**	3	
				else	:	
								volume	=	0	
				return	volume	

Make Sure A Return Catches All Cases
•  Missing	return	statement	

•  Make	sure	all	condi0ons	are	handled	
•  In	this	case,	sideLength	could	be	equal	to	0	

•  No	return	statement	for	this	condi0on	
•  The	compiler	will	not	complain	if	any	branch	has	no	return	
statement	

•  It	may	result	in	a	run-0me	error	because	Python	returns	the	
special	value	None	when	you	forget	to	return	a	value	

9/23/16 Page 37

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0	:	
								return	sideLength	**	3	
				#	Error—no	return	value	if	sideLength	<	0	

Make Sure A Return Catches All Cases (2)

•  A	correct	implementa0on:	

9/23/16 Page 38

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0	
								return	sideLength	**	3	
				else	:	
								return	0	

