
Return Values
SECTION 5.4

9/26/16 Page 33

Return Values
•  Func%ons	can	(op%onally)	return	one	value	

•  Add	a	return	statement	that	returns	a	value	

•  A	return	statement	does	two	things:	
1)  Immediately	terminates	the	func%on	

2)  Passes	the	return	value	back	to	the	calling	func%on	

9/26/16 Page 34

def	cubeVolume	(sideLength):	
			volume	=	sideLength	*	3	
			return	volume	
	

return	statement	

The	return	value	may	be	a	value,	a	variable	or	a	calcula3on	

Multiple return Statements
•  A	func%on	can	use	mul%ple	return	statements	

•  But	every	branch	must	have	a	return	statement	

9/26/16 Page 35

def	cubeVolume(sideLength):	
		if	(sideLength	<	0):		
					return	0		
		return	sideLength	*	3	
	

Multiple return Statements (2)
•  Alterna%ve	to	mul%ple	returns	(e.g.,	one	for	each	branch):	

•  You	can	avoid	mul%ple	returns	by	storing	the	func%on	result	in	a	variable	
that	you	return	in	the	last	statement	of	the	func%on		

•  For	example:	

9/26/16 Page 36

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0:	
								volume	=	sideLength	**	3	
				else	:	
								volume	=	0	
				return	volume	

Make Sure A Return Catches All Cases
•  Missing	return	statement	

•  Make	sure	all	condi%ons	are	handled	
•  In	this	case,	sideLength	could	be	equal	to	0	

•  No	return	statement	for	this	condi%on	
•  The	compiler	will	not	complain	if	any	branch	has	no	return	
statement	

•  It	may	result	in	a	run-%me	error	because	Python	returns	the	
special	value	None	when	you	forget	to	return	a	value	

9/26/16 Page 37

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0	:	
								return	sideLength	**	3	
				#	Error—no	return	value	if	sideLength	<	0	

Make Sure A Return Catches All Cases (2)

•  A	correct	implementa%on:	

9/26/16 Page 38

def	cubeVolume(sideLength)	:	
				if	sideLength	>=	0	
								return	sideLength	**	3	
				else	:	
								return	0	

Implementing a Function: Steps
1.  Describe	what	the	func%on	should	do	
i.  Provide	a	simple	“liberal	arts	terms”	descrip%on	of	what	the	

func%ons	does	
ii.  “Compute	the	volume	of	a	pyramid	with	a	square	base”	

2.  Determine	a	list	of	all	of	the	func%ons	inputs	
i.  Make	a	list	of	all	of	the	parameters	that	can	vary	
ii.  Do	not	be	overly	specific	

3.  Determine	the	types	of	the	parameter	variables	and	the	return	
value	

9/26/16 Page 39

Implementing a Function: Steps
4)  Write	pseudocode	for	obtaining	the	desired	result	
i.  Express	an	mathema%cal	formulas,	branches	and	loops	in	

pseudocode	
5)  Implement	the	func%on	body	

9/26/16 Page 40

def	pyramidVolume(height,	baseLength)	:	
				baseArea	=	baseLength	*	baseLength	
				return	height	*	baseArea	/	3	

Implementing a Function: Steps

6)  Test	your	func%on	
i.  Design	test	cases	and	code	

9/26/16 Page 41

Pyramids.py
•  Open	the	file	pyramids.py	

•  Look	at	how	the	main	func%on	is	set	up	to	make	the	calls	to	
pyramidVolume	and	print	the	expected	results	

9/26/16 Page 42

Functions Without Return Values
SECTION 5.5

9/26/16 Page 43

Functions Without Return Values
•  func%ons	are	not	required	to	return	a	value	

•  No	return	statement	is	required	
•  The	func%on	can	generate	output	even	when	it	doesn’t	have	a	
return	value	

9/26/16 Page 44

def	boxString(contents)	:	
				n	=	len(contents)	:	
				print("-"	*	(n	+	2))	
				print("!"	+	contents	+	"!")	
				print("-"	*	(n	+	2))	

...	
boxString("Hello")
...	

Using return Without a Value
•  You	can	use	the	return	statement	without	a	value	

•  The	func%on	will	terminate	immediately!	

9/26/16 Page 45

def	boxString(contents)	:	
				n	=	len(contents)	
				if	n	==	0	:	
								return	#	Return	immediately	
				print("-"	*	(n	+	2))	
				print("!"	+	contents	+	"!")	
				print("-"	*	(n	+	2))	

Reusable Functions
SECTION 5.6

9/26/16 Page 46

Problem Solving: Reusable
Functions

•  Find	repe++ve	code	
•  May	have	different	values	but	same	logic		

9/26/16 Page 47

hours	=	int(input("Enter	a	value	between	0	and	23:	"))	
while	hours	<	0	or	hours	>	23	:	
				print("Error:	value	out	of	range.")	
				hours	=	int(input("Enter	a	value	between	0	and	23:	"))	
					
	
minutes	=	int(input("Enter	a	value	between	0	and	59:	"))	
while	minutes	<	0	or	minutes	>	59	:	
				print("Error:	value	out	of	range.")	
				minutes	=	int(input("Enter	a	value	between	0	and	59:	"))	

0	-	23	

0	-	59	

Write a ‘Parameterized’ Function
	 ##	Prompts	a	user	to	enter	a	value	up	to	a	given	maximum	until	the	user	
provides	
#	a	valid	input.	
#	@param	high	an	integer	indicating	the	largest	allowable	input	
#	@return	the	integer	value	provided	by	the	user	(between	0	and	high,	
inclusive)	
#	
def	readIntUpTo(high)	:	
				value	=	int(input("Enter	a	value	between	0	and	"	+	str(high)	+	":	
"))	
				while	value	<	0	or	value	>	high	:	
								print("Error:	value	out	of	range.")	
				value	=	int(input("Enter	a	value	between	0	and	"	+	str(high)	+	":	
"))	
	
				return	value	

9/26/16 Page 48

Readtime.py
•  Open	the	file	read%me.py	

•  Test	the	program	with	several	inputs	
•  How	would	you	modify	your	project	to	use	the	readInBetween	
func%on?	

9/26/16 Page 49

An Alternate If Structure
•  Open	the	file	earthquake.py	
•  The	file	contains	two	func%ons	that	solve	the	Richter	scale	problem	
from	earlier	this	semester	
•  The	first	uses	an	“if	–	elif”	construct	
•  The	second	uses		single-line	compound	statements	(Special	Topic	
5.1,	p.	256)	

•  This	form	of	an	if	statement	is	very	useful	in	func%ons	that	select	
and	return	a	single	value	from	a	set	of	values	

9/26/16 Page 50

Stepwise Refinement
SECTION 5.7

9/26/16 Page 51

Stepwise Refinement
•  To	solve	a	difficult	task,	break	it	down	into	simpler	tasks		
•  Then	keep	breaking	down	the	simpler	tasks	into	even	simpler	ones,	un%l	you	
are	led	with	tasks	that	you	know	how	to	solve	

9/26/16 Page 52

Get Coffee

•  If	you	must	make	coffee,	there	are	two	ways:	
•  Make	Instant	Coffee	
•  Brew	Coffee	

9/26/16 Page 53

Instant Coffee
•  Two	ways	to	boil	water	
1)	Use	Microwave	
2)	Use	Kegle	on	Stove	

9/26/16 Page 54

Brew Coffee
•  Assumes	coffee	maker	

•  Add	water	
•  Add	filter	
•  Grind	Coffee	

•  Add	beans	to	grinder	
•  Grind	60	seconds	

•  Fill	filter	with	ground	coffee	
•  Turn	coffee	maker	on	

•  Steps	are	easily	done	

9/26/16 Page 55

Stepwise Refinement Example
•  When	prin%ng	a	check,	it	is	customary	to	write	the	check	amount	both	
as	a	number	(“$274.15”)	and	as	a	text	string	(“two	hundred	seventy	
four	dollars	and	15	cents”)		

•  Write	a	program	to	turn	a	number	into	a	text	string	

•  Wow,	sounds	difficult!	

•  Break	it	down	
•  Let’s	take	the	dollar	part	(274)	and	come	up	with	a	plan	
•  Take	an	Integer	from	0	–	999	
•  Return	a	String	
•  S%ll	pregy	hard…	

9/26/16 Page 56

Stepwise Refinement Example
•  Take	it	digit	by	digit	(2,	7,	4)	–	led	to	right	
•  Handle	the	first	digit	(hundreds)	

•  If	empty,	we	are	done	with	hundreds	
•  Get	first	digit	(Integer	from	1	–	9)	
•  Get	digit	name	(“one”,	“two”,	“three”…)		
•  Add	the	word	“hundred”	
•  Sounds	easy!	

•  Second	digit	(tens)	
•  Get	second	digit	(Integer	from	0	–	9)	
•  If	0,	we	are	done	with	tens…	handle	third	digit	
•  If	1,	…	may	be	eleven,	twelve...		Teens…	Not	easy!	

•  Let’s	look	at	each	possibility	led	(1x-9x)…		

9/26/16 Page 57

Stepwise Refinement Example
•  If	second	digit	is	a	0	

•  Get	third	digit	(Integer	from	0	–	9)	
•  Get	digit	name	(“”,	“one”,	“two”…)	…	Same	as	before?	
•  Sounds	easy!	

•  If	second	digit	is	a	1	
•  Get	third	digit	(Integer	from	0	–	9)	
•  Return	a	String	(“ten”,	“eleven”,	“twelve”…)	

•  If	second	digit	is	a	2-9	
•  Start	with	string	“twenty”,	“thirty”,	“forty”…	
•  Get	third	digit	(Integer	from	0	–	9)	
•  Get	digit	name	(“”,	“one”,	“two”…)			…	Same	as	before	
•  Sounds	easy!	

9/26/16 Page 58

Name the Sub-Tasks
•  digitName	

•  Takes	an	Integer	from	0	–	9	
•  Return	a	String	(“”,	“one”,	“two”…)	

•  tensName	(second	digit	>=	20)	
•  Takes	an	Integer	from	0	–	9	
•  Return	a	String	(“twenty”,	“thirty”…)	plus	

•  digitName(third	digit)		
•  teenName	

•  Takes	an	Integer	from	0	–	9	
•  Return	a	String	(“ten”,	“eleven”…)	

9/26/16 Page 59

Write Pseudocode
part	=	number	(The	part	that	s%ll	needs	to	be	converted)	
name	=	“”	(The	name	of	the	number)	
If	part	>=	100	
		name	=	name	of	hundreds	in	part	+	"	hundred"	
		Remove	hundreds	from	part	
If	part	>=	20	
		Append	tensName(part)	to	name	
		Remove	tens	from	part	
Else	if	part	>=	10	
		Append	teenName(part)	to	name	
		part	=	0	
If	(part	>	0)	
		Append	digitName(part)	to	name	

9/26/16 Page 60

Iden3fy	func3ons	that	we	can	use	
(or	re-use!)	to	do	the	work	

Plan The Functions
•  Decide	on	name,	parameter(s)	and	types	and	return	type	

•  def	intName	(number):	
•  Turns	a	number	into	its	English	name	
•  Returns	a	String	that	is	the	English	descrip%on	of	a	number	(e.g.,	
“seven	hundred	twenty	nine”)	

•  def	digitName	(digit):	
•  Return	a	String	(“”,	“one”,	“two”…)	

•  def	tensName	(number):	
•  Return	a	String	(“twenty”,	“thirty”…)	plus	

•  Return	from	digitName(thirdDigit)	

•  def	teenName	(number):	
•  Return	a	String	(“ten”,	“eleven”…)	

9/26/16 Page 61

Convert to Python: intName
Function

•  Open	the	file	intname.py	in	Wing	

•  main	calls	intName	
•  Does	all	the	work	
•  Returns	a	String	

•  Uses	func%ons:	
•  tensName	

•  teenName	
•  digitName	

Page 62 9/26/16

intName

Page 63 9/26/16

digitName

9/26/16 Page 64

teenName

9/26/16 Page 65

tensName

9/26/16 Page 66

Programming Tips
•  Keep	func%ons	short	

•  If	more	than	one	screen,	break	into	‘sub’	func%ons	
•  Trace	your	func%ons	

•  One	line	for	each	step	
•  Columns	for	key	variables	

•  Use	Stubs	as	you	write	larger	programs	
•  Unfinished	func%ons	that	return	a	‘dummy’	value	

9/26/16 Page 67

