
Variable Scope
SECTION 5.8

9/28/16 Page 68

Variable Scope
•  Variables	can	be	declared:	

•  Inside	a	func1on	
•  Known	as	‘local	variables’	
•  Only	available	inside	this	func1on	
•  Parameter	variables	are	like	local	variables		

•  Outside	of	a	func1on	
•  Some1mes	called	‘global	scope’	
•  Can	be	used	(and	changed)	by	code	in	any	func1on	

•  How	do	you	choose?	

9/28/16 Page 69

The	scope	of	a	variable	is	the	part	of	the	program	in	which	it	
is	visible	

Examples of Scope
•  sum,	square	&	i	are	local	variables	in	main	

9/28/16 Page 70

def	main()	:	
				sum	=	0	
								for	i	in	range(11)	:	
												square	=	i	*	i	
												sum	=	sum	+	square	
				print(square,	sum)	

sum

i

square

Local Variables of functions
•  Variables	declared	inside	one	func1on	are	not	visible	to	other	
func1ons		
•  sideLength	is	local	to	main		
•  Using	it	outside	main	will	cause	a	compiler	error	

9/28/16 Page 71

def	main():	
			sideLength	=	10	
			result	=	cubeVolume()	
			print(result)	
	
	
def	cubeVolume():	
		return	sideLength	*	sideLength	*	sideLength	#	ERROR	
	

Re-using Names for Local Variables
•  Variables	declared	inside	one	func1on	are	not	visible	to	other	
func1ons		
•  result	is	local	to	square	and	result	is	local	to	main		
•  They	are	two	different	variables	and	do	not	overlap	
•  This	can	be	very	confusing	

9/28/16 Page 72

def	square(n):	
			result	=	n	*	n	
			return	result	
	
def	main():	
			result	=	square(3)	+	square(4)	
			print(result)	
	

result

result

Global Variables
•  They	are	variables	that	are	defined	outside	func1ons	
•  A	global	variable	is	visible	to	all	func1ons	that	are	defined	aNer	it	

•  However,	any	func1on	that	wishes	to	use	a	global	variable	must	
include	a	global	declara1on	

9/28/16 Page 73

Example Use of a Global Variable
•  If	you	omit	the	global	declara1on,	then	the	balance	variable	inside	the	
withdraw	func1on	is	considered	a	local	variable	

balance	=	10000				#	A	global	variable	
def	withdraw(amount)	:	
				#	This	function	intends	to	access	the		
				#	global	‘balance’	variable	
				global	balance		
				if	balance	>=	amount	:	
								balance	=	balance	-	amount	

9/28/16 Page 74

Programming Tip

9/28/16 Page 75

•  There	are	a	few	cases	where	global	variables	are	required	(such	as	pi	
defined	in	the	math	module),	but	they	are	quite	rare	

•  Programs	with	global	variables	are	difficult	to	maintain	and	extend	
because	you	can	no	longer	view	each	func1on	as	a	“black	box”	that	
simply	receives	arguments	and	returns	a	result	

•  Instead	of	using	global	variables,	use	func1on	parameter	variables	and	
return	values	to	transfer	informa1on	from	one	part	of	a	program	to	
another	

Recursive Functions
SECTION 5.10

9/28/16 Page 79

Recursive Functions
•  A	recursive	func1on	is	a	func1on	that	calls	itself	
•  A	recursive	computa1on	solves	a	problem	by	using	the	solu1on	of	the	
same	problem	with	simpler	inputs	

•  For	a	recursion	to	terminate,	there	must	be	special	cases	for	the	
simplest	inputs	

9/28/16 Page 80

Recursive Triangle Example

•  The	func1on	will	call	itself	(and	not	output	
anything)	un1l	sideLength	becomes	<	1	

•  It	will	then	use	the	return	statement	and	
each	of	the	previous	itera1ons	will	print	
their	results	
•  1,	2,	3	then	4	

def	printTriangle(sideLength)	:	

				if	sideLength	<	1	:	return	

				printTriangle(sideLength	-	1)	

				print("[]"	*	sideLength)	

Special	Case	

Recursive	Call	

9/28/16 Page 81

Recursive Calls and Returns

9/28/16 Page 82

A Second Example
•  Open	the	file	digits.py	
•  This	program	computes	the	sum	of	the	digits	in	a	number	(n)		

•  We	solved	this	last	chapter	in	Sec1on	4.2			
•  We	will	use	n	=	1729	as	our	example	

•  Our	algorithm	was:	
•  Remove	the	last	digit	by	compu1ng		n	//	10	and	add	the	remainder	
to	our	total	

•  To	use	recursion	we	can	use	the	recursive	func1on:	
•  digitsum(n	//	10)	+	n	%	10	
•  Our	special	case	is	n	==	0	to	terminate	the	recursion	

9/28/16 Page 83

Summary

9/28/16 Page 84

Summary: Functions
•  A	func1on	is	a	named	sequence	of	instruc1ons	
•  Arguments	are	supplied	when	a	func1on	is	called	
•  The	return	value	is	the	result	that	the	func1on	computes	
•  When	declaring	a	func1on,	you	provide	a	name	for	the	func1on	and	a	
variable	for	each	argument	

•  Func1on	comments	explain	the	purpose	of	the	func1on,	the	meaning	
of	the	parameters	and	return	value,	as	well	as	any	special	
requirements	

•  Parameter	variables	hold	the	arguments	supplied	in	the	func1on	call	

9/28/16 Page 85

Summary: Function Returns
•  The	return	statement	terminates	a	func1on	call	and	yields	the	func1on	
result	
•  Complete	computa1ons	that	can	be	reused	into	func1ons	

•  Use	the	process	of	stepwise	refinement	to	decompose	complex	tasks	
into	simpler	ones	
•  When	you	discover	that	you	need	a	func1on,	write	a	descrip1on	of	
the	parameter	variables	and	return	values	

•  A	func1on	may	require	simpler	func1ons	to	carry	out	its	work	

9/28/16 Page 86

Summary: Scope
•  The	scope	of	a	variable	is	the	part	of	the	program	in	which	the	variable	
is	visible	
•  Two	local	or	parameter	variables	can	have	the	same	name,	provided	
that	their	scopes	do	not	overlap	

•  You	can	use	the	same	variable	name	within	different	func1ons	since	
their	scope	does	not	overlap	

•  Local	variables	declared	inside	one	func1on	are	not	visible	to	code	
inside	other	func1ons	

9/28/16 Page 87

Summary: Recursion
•  A	recursive	computa1on	solves	a	problem	by	using	the	solu1on	of	the	
same	problem	with	simpler	inputs	
•  For	recursion	to	terminate,	there	must	be	special	cases	for	the	
simplest	inputs	

•  The	key	to	finding	a	recursive	solu1on	is	reducing	the	input	to	a	
simpler	input	for	the	same	problem	

•  When	designing	a	recursive	solu1on,	do	not	worry	about	mul1ple	
nested	calls			
•  Simply	focus	on	reducing	a	problem	to	a	slightly	simpler	one	

9/28/16 Page 88

