
Chapter 6

Chapter Goals
•  To	collect	elements	using	lists	

•  To	use	the	for	loop	for	traversing	lists	

•  To	learn	common	algorithms	for	processing	lists	

•  To	use	lists	with	func5ons	

•  To	work	with	tables	of	data	

10/3/16 Page 2

Contents
•  Basic	Proper5es	of	Lists	
•  List	Opera5ons	
•  Common	List	Algorithms	
•  Using	Lists	with	Func5ons	
•  Problem	Solving:	Adap5ng	Algorithms	

•  Problem	Solving:	Discovering	Algorithms	by	Manipula5ng	Physical	
Objects	

•  Tables	

10/3/16 Page 3

Basic Properties of Lists
SECTION 6.1

10/3/16 Page 4

Creating a List
•  Specify	a	list	variable	with	the	subscript	operator	[]		

10/3/16 Page 5

Accessing List Elements
•  A	list	is	a	sequence	of	elements,	each	of	which	has	an	integer	posi5on	
or	index	

•  To	access	a	list	element,	you	specify	which	index	you	want	to	use.	That	
is	done	with	the	subscript	operator	in	the	same	way	that	you	access	
individual	characters	in	a	string	

print(values[5])	 values[5]	=	87	

Accessing list
elements

Replacing list
elements

10/3/16 Page 6

Creating Lists/Accessing Elements

#	1:	Creating	a	list	
values	=	[32,	54,	67.5,	29,	35,	80,	115,	44.5,	100,	65]	
	
#	2:	Accessing	a	list	element	
values[5]	=	87	

10/3/16 Page 7

Lists Vs. Strings
•  Both	lists	and	strings	are	sequences,	and	the	[]	operator	is	used	to	
access	an	element	in	any	sequence	

•  There	are	two	differences	between	lists	and	strings:		
•  Lists	can	hold	values	of	any	type,	whereas	strings	are	sequences	of	
characters		

•  Moreover:		
•  strings	are	immutable—	you	cannot	change	the	characters	in	the	
sequence		

•  Lists	are	mutable	

10/3/16 Page 8

Out of Range Errors
•  Out-of-Range	Errors:	
•  Perhaps	the	most	common	error	in	using	lists	is	accessing	a	
nonexistent	element	

•  If	your	program	accesses	a	list	through	an	out-of-range	index,	the	
program	will	generate	an	excep5on	at	run	5me	

10/3/16 Page 9

values	=	[2.3,	4.5,	7.2,	1.0,	12.2,	9.0,	15.2,	0.5]	
values[8]	=	5.4	
#	Error––values	has	8	elements,		
#	and	the	index	can	range	from	0	to	7	

Determining List Length
•  You	can	use	the	len()	func5on	to	obtain	the	length	of	the	list;	that	is,	
the	number	of	elements:	

10/3/16 Page 10

numElements	=	len(values)	

Using The Square Brackets
•  Note	that	there	are	two	dis5nct	uses	of	the	square	brackets.	When	the	
square	brackets	immediately	follow	a	variable	name,	they	are	treated	
as	the	subscript	operator:	

values[4]	

values	=	[4]	

10/3/16 Page 11

•  When	the	square	brackets	follow	an	“=“	they	create	a	list:	

Loop Over the Index Values
•  Given	the	values	list	that	contains	10	elements,	we	will	want	to	set	a	
variable,	say	i,	to	0,	1,	2,	and	so	on,	up	to	9	

#	First	version	(list	index	used)	
for	i	in	range(10)	:	
				print(i,	values[i])	

#	Better	version	(list	index	used)	
for	i	in	range(len(values))	:	
				print(i,	values[i])	

#	Third	version:	index	values	not	needed	(traverse		
#	list	elements)	
for	element	in	values	:	
				print(element)	

10/3/16 Page 12

List References
•  Make	sure	you	see	the	difference	between	the:	

•  List	variable:		The	named	‘alias’	or	pointer	to	the	list	
•  List	contents:		Memory	where	the	values	are	stored	

10/3/16 Page 13

values	=	[32,	54,	67.5,	29,	35,	80,	115,	44.5,	100,	65]	

A list variable contains a reference to the list
contents. The reference is the location of the
list contents (in memory).

List variable List contents

Reference

Values

List Aliases
•  When	you	copy	a	list	variable	into	another,	both	variables	refer	to	the	same	
list	
•  The	second	variable	is	an	alias	for	the	first	because	both	variables	
reference	the	same	list	

scores	=	[10,	9,	7,	4,	5]	
values	=	scores					#	Copying	list	reference	

A list variable specifies
the location of a list.
Copying the reference
yields a second
reference to the same
list.

References

List contents

10/3/16 Page 14

Modifying Aliased Lists
•  You	can	modify	the	list	through	either	of	the	variables:	

scores[3]	=	10	
print(values[3])			#	Prints	10	

10/3/16 Page 15

Reverse Subscripts
•  Python,	unlike	other	languages,	uses	
nega5ve	subscripts	to	provide	access	
to	the	list	elements	in	reverse	order.	
•  For	example,	a	subscript	of	–1	
provides	access	to	the	last	element	
in	the	list:	

•  Similarly,	values[-2]	is	the	second-
to-last	element.	

Just	because	you	can	do	this,	does	not	
mean	you	should…	

last	=	values[-1]	
print("The	last	element	in	the	
list	is",	last)	

10/3/16 Page 16

List Operations
SECTION 6.2

10/3/16 Page 17

List Operations
•  Appending	Elements	

•  Inser5ng	an	Element	

•  Finding	an	Element	

•  Removing	an	Element	

•  Concatena5on		

•  Equality	/	Inequality	Tes5ng	
•  Sum,	Maximum,	Minimum,	and	Sor5ng	

•  Copying	Lists	

10/3/16 Page 18

Appending Elements
•  Some5mes	we	may	not	know	the	values	that	will	be	contained	in	the	
list	when	it’s	created		

•  In	this	case,	we	can	create	an	empty	list	and	add	elements	to	the	end	
as	needed	

#1	
friends	=	[]	
	
#2	
friends.append("Harry")	
	
#3	
friends.append("Emily")	
friends.append("Bob")	
friends.append("Cari")	

10/3/16

Page 19

Inserting an Element
•  Some5mes	the	order	in	which	elements	are	added	to	a	list	is	
important	
•  A	new	element	has	to	be	inserted	at	a	specific	posi5on	in	the	list	

#1	
friends	=	["Harry",	
"Emily",	"Bob",	"Cari"]	
	
#2	
friends.insert(1,	
"Cindy")	

10/3/16 Page 20

Finding an Element
•  If	you	simply	want	to	know	whether	an	element	is	present	in	a	list,	use	
the	in	operator:	

if	"Cindy"	in	friends	:	
				print("She's	a	friend")	

friends	=	["Harry",	"Emily",	"Bob",	"Cari",	"Emily"]	
n	=	friends.index("Emily")	#	Sets	n	to	1	

10/3/16 Page 21

•  Oeen,	you	want	to	know	the	posi5on	at	which	an	element	occurs		
•  The	index()	method	yields	the	index	of	the	first	match	

