
Chapter 6

Concatenation
•  The	concatena*on	of	two	lists	is	a	new	list	that	contains	the	elements	
of	the	first	list,	followed	by	the	elements	of	the	second	

myFriends	=	["Fritz",	"Cindy"]	
yourFriends	=	["Lee",	"Pat",	"Phuong"]	

ourFriends	=	myFriends	+	yourFriends	
#	Sets	ourFriends	to	["Fritz",	"Cindy",	"Lee",	"Pat","Phuong"]	

10/3/16 Page 24

•  Two	lists	can	be	concatenated	by	using	the	plus	(+)	operator:	

Replication
•  As	with	string	replica*on	of	two	lists	is	a	new	list	that	contains	the	
elements	of	the	first	list,	followed	by	the	elements	of	the	second	

monthInQuarter	=	[1,	2,	3]	*	4	

10/3/16 Page 25

monthlyScores	=	[0]	*	12	

•  Results	in	the	list	[1,	2,	3,	1,	2,	3,	1,	2,	3,	1,	2	,3]	
•  You	can	place	the	integer	on	either	side	of	the	“*”	operator	

•  The	integer	specifies	how	many	copies	of	the	list	should	be	
concatenated	

•  One	common	use	of	replica*on	is	to	ini*alize	a	list	with	a	fixed	value	

	

Equality / Inequality Testing
•  You	can	use	the	==	operator	to	compare	whether	two	lists	have	the	
same	elements,	in	the	same	order.	

	[1,	4,	9]	==	[1,	4,	9]					#	True	
[1,	4,	9]	==	[4,	1,	9]				#	False.	

[1,	4,	9]	!=	[4,	9]					#	True.	

10/3/16 Page 26

•  The	opposite	of	==	is	!=.	

Sum, Maximum, Minimum
•  If	you	have	a	list	of	numbers,	the	sum()	func*on	yields	the	sum	of	all	
values	in	the	list.	

sum([1,	4,	9,	16])	#	Yields	30	

max([1,	16,	9,	4])																		#	Yields	16	
min(["Fred",	"Ann",	"Sue”])											#	Yields	"Ann"	

10/3/16 Page 27

•  For	a	list	of	numbers	or	strings,	the	max()	and	min()	func*ons	return	
the	largest	and	smallest	value:	

Sorting
•  The	sort()	method	sorts	a	list	of	numbers	or	strings.	

10/3/16 Page 28

values	=	[1,	16,	9,	4]	
values.sort()	#	Now	values	is	[1,	4	,	9,	16]	

Copying Lists
•  As	discussed,	list	variables	do	not	themselves	hold	list	elements	

•  They	hold	a	reference	to	the	actual	list	

•  If	you	copy	the	reference,	you	get	another	reference	to	the	same	list:	

10/3/16 Page 29

prices	=	values	

Copying Lists (2)
•  Some*mes,	you	want	to	make	a	copy	of	a	list;	that	is,	a	new	list	that	
has	the	same	elements	in	the	same	order	as	a	given	list	

•  Use	the	list()	func*on:	

10/3/16 Page 30

prices	=	list(values)	

Slices of a List
•  Some*mes	you	want	to	look	at	a	part	of	a	list.		Suppose	you	are	given	
a	list	of	temperatures,	one	per	month:	

temperatures	=	[18,	21,	24,	33,	39,	40,	39,	36,	30,	22,	18]	

•  You	are	only	interested	in	the	temperatures	for	the	third	quarter,	with	
index	values	6,	7,	and	8	

•  You	can	use	the	slice	operator	to	obtain	them:	

thirdQuarter	=	temperatures[6	:	9]	

•  The	arguments	are	the	first	element	to	include,	and	the	first	to	exclude	
•  So	in	our	example	we	get	elements	6,	7,	and	8	

10/3/16 Page 31

Slices (2)
•  Both	indexes	used	with	the	slice	operator	are	op*onal	
•  If	the	first	index	is	omiYed,	all	elements	from	the	first	are	included	

•  The	slice	
temperatures[:	6]		

•  Includes	all	elements	up	to,	but	not	including,	posi*on	6	

•  The	slice		
temperatures[6	:]		

•  Includes	all	elements	star*ng	at	posi*on	6	to	the	end	of	the	list	

•  You	can	assign	values	to	a	slice:	
temperatures[6	:	9]	=	[45,	44,	40]	

•  Replaces	the	values	in	elements	6,	7,	and	8	

10/3/16 Page 32

Common List Functions And Operators

10/3/16 Page 33

Common List Functions And Operators (2)

10/3/16 Page 34

Common List Methods

10/3/16 Page 35

Common List Algorithms
SECTION 6.3

10/3/16 Page 36

Common List Algorithms
•  Filling	a	List	
•  Combining	List	Elements	

•  Element	Separators	

•  Maximum	and	Minimum	

•  Linear	Search	

•  Collec*ng	and	Coun*ng	Matches	

•  Removing	Matches	

•  Swapping	Elements	

•  Reading	Input	

10/3/16 Page 37

Filling a List
•  This	loop	creates	and	fills	a	list	with	squares	(0,	1,	4,	9,	16,	...)	

values	=	[]	
for	i	in	range(n)	:	
				values.append(i	*	i)	

10/3/16 Page 38

Combining List Elements
•  Here	is	how	to	compute	a	sum	of	numbers:	

result	=	0.0	
for	element	in	values	:	
				result	=	result	+	element	

result	=	""	
for	element	in	names	:	
				result	=	result	+	element	

10/3/16 Page 39

•  To	concatenate	strings,	you	only	need	to	change	the	ini*al	value:	

Element Separators
•  When	you	display	the	elements	of	a	list,	you	usually	want	to	separate	
them,	ocen	with	commas	or	ver*cal	lines,	like	this:	

Harry,	Emily,	Bob	

10/3/16 Page 40

Element Separators (2)
•  Add	the	separator	before	each	element	(there’s	one	fewer	separator	
than	there	are	numbers)	in	the	sequence	except	the	ini*al	one	(with	
index	0),	like	this:	

10/3/16 Page 41

for	i	in	range(len(names))	:	
				if	i	>	0	:	
								result	=	result	+	",	"	
				result	=	result	+	names[i]	

Element Separators (3)
•  If	you	want	to	print	values	without	adding	them	to	a	string:	

10/3/16 Page 42

for	i	in	range(len(values))	:	
				if	i	>	0	:	
								print("	|	",	end="")	
				print(values[i],	end="")	
print()	

Maximum and Minimum
•  Here	is	the	implementa*on	of	the	max	algorithm	(already	covered	in	
Chapter	4,	this	one	is	just	specific	to	a	list):	

10/3/16 Page 43

largest	=	values[0]	
for	i	in	range(1,	len(values))	:	
				if	values[i]	>	largest	:	
								largest	=	values[i]	

smallest	=	values[0]	
for	i	in	range(1,	len(values))	:	
				if	values[i]	<	smallest	:	
								smallest	=	values[i]	

Linear Search
•  Finding	the	first	value	that	is	>	100.	You	need	to	visit	all	elements	un*l	
you	have	found	a	match	or	you	have	come	to	the	end	of	the	list:	

10/3/16 Page 44

limit	=	100	
pos	=	0	
found	=	False	
while	pos	<	len(values)	and	not	found	:	
				if	values[pos]	>	limit	:	
								found	=	True	
				else	:	
								pos	=	pos	+	1	
if	found	:	
				print("Found	at	position:",	pos)	
else	:	
				print("Not	found")	

A linear search
inspects
elements
in sequence
until a
match is found.

Collecting and Counting Matches
•  Collec*ng	all	matches	

10/3/16 Page 45

limit	=	100	
result	=	[]	
for	element	in	values	:	
				if	(element	>	limit)	:	
								result.append(element)	

limit	=	100	
counter	=	0	
for	element	in	values	:	
				if	(element	>	limit)	:	
								counter	=	counter	+	1	

•  Coun*ng	matches	

Removing Matches
•  Remove	all	elements	that	match	a	par*cular	condi*on	

•  Example:	remove	all	strings	of	length	<	4	from	a	list	

10/3/16 Page 46

i	=	0	
while	i	<	len(words)	:	
				word	=	words[i]	
				if	len(word)	<	4	:	
								words.pop(i)	
				else	:	
								i	=	i	+	1	

Swapping Elements
•  For	example,	you	can	sort	a	list	by	repeatedly	swapping	elements	that	
are	not	in	order	

•  Swap	the	elements	at	posi*ons	i	and	j	of	a	list	values	

•  We’d	like	to	set	values[i]	to	values[j].	But	that	overwrites	the	value	that	
is	currently	stored	in	values[i],	so	we	want	to	save	that	first:	

10/3/16 Page 47

Before moving a new value into a
location (say blue) copy blue’s value
elsewhere and then move black’s value
into blue. Then move the temporary
value (originally in blue) into black.

