
FILES AND EXCEPTIONS 

Chapter Seven 

10/14/16 1 



Chapter Goals 
•  To	read	and	write	text	files	
•  To	process	collec2ons	of	data	

•  To	process	command	line	arguments	

•  To	raise	and	handle	excep2ons	

10/14/16 

In this chapter, you will learn how to write programs that 
manipulate files 

Page 2 



Contents 
•  Reading	and	Wri2ng	Text	Files	

•  Text	Input	and	Output	

10/14/16 Page 3 



Reading and Writing Text Files 
SECTION 7.1 

10/14/16 4 



Reading and Writing Text Files 
•  Text	files	are	very	commonly	used	to	store	informa2on	

•  They	are	the	most	‘portable’	types	of	data	files	

•  Examples	of	text	files	include	files	that	are	created	with	a	simple	text	
editor,	such	as	Windows	Notepad,	and	Python	source	code	and	HTML	
files	
	

	

	

10/14/16 Page 5 



Opening Files: Reading 
•  To	access	a	file,	you	must	first	open	it	

•  Suppose	you	want	to	read	data	from	a	file	named	input.txt,	located	in	
the	same	directory	as	the	program	

•  To	open	a	file	for	reading,	you	must	provide	the	name	of	the	file	as	the	
first	argument	to	the	open	func2on	and	the	string	"r"	as	the	second	
argument:	

10/14/16 

infile	=	open("input.txt",	"r")	

Page 6 



Opening Files: Reading (2) 
•  Important	things	to	keep	in	mind:	

•  When	opening	a	file	for	reading,	the	file	must	exist	(and	otherwise	
be	accessible)	or	an	excep2on	occurs	

•  The	file	object	returned	by	the	open	func2on	must	be	saved	in	a	
variable	
•  All	opera2ons	for	accessing	a	file	are	made	via	the	file	object	

10/14/16 Page 7 



Opening Files: Writing 
•  To	open	a	file	for	wri2ng,	you	provide	the	name	of	the	file	as	the	first	
argument	to	the	open	func2on	and	the	string	"w"	as	the	second	
argument:	

10/14/16 

outfile	=	open("output.txt",	"w")	

Page 8 

•  If	the	output	file	already	exists,	it	is	emp2ed	before	the	new	data	is	
wriRen	into	it	

•  If	the	file	does	not	exist,	an	empty	file	is	created	



Closing Files: Important 
•  When	you	are	done	processing	a	file,	be	sure	to	close	the	file	using	the	
close()	method:	

10/14/16 

infile.close()	
outfile.close()	

Page 9 

•  If	your	program	exits	without	closing	a	file	that	was	opened	for	wri2ng,	
some	of	the	output	may	not	be	wriRen	to	the	disk	file	



Syntax: Opening And Closing Files 

10/14/16 Page 10 



Reading From a File 
•  To	read	a	line	of	text	from	a	file,	call	the	readline()	method	with	the	file	
object	that	was	returned	when	you	opened	the	file:	

10/14/16 

line	=	infile.readline()	

Page 11 

•  When	a	file	is	opened,	an	input	marker	is	posi2oned	at	the	beginning	
of	the	file		

•  The	readline()	method	reads	the	text,	star2ng	at	the	current	posi2on	
and	con2nuing	un2l	the	end	of	the	line	is	encountered		
•  The	input	marker	is	then	moved	to	the	next	line	



Reading From a File (2) 
•  For	example,	suppose	input.txt	contains	the	lines	

		flying	
		circus	

•  The	first	call	to	readline()	returns	the	string	"flying\n"	
•  Recall	that	\n	denotes	the	newline	character	that	indicates	the	end	of	the	
line		

•  If	you	call	readline()	a	second	2me,	it	returns	the	string	"circus\n"		

10/14/16 Page 12 



Reading From a File (3) 
•  Calling	readline()	again	yields	the	empty	string	""	because	you	have	
reached	the	end	of	the	file	

•  If	the	file	contains	a	blank	line,	then	readline()	returns	a	string	
containing	only	the	newline	character	"\n"	

10/14/16 Page 13 



Reading Multiple Lines From a File 
•  You	repeatedly	read	a	line	of	text	and	process	it	un2l	the	sen2nel	value	
is	reached:	

•  The	sen2nel	value	is	an	empty	string,	which	is	returned	by	the	
readline()	method	aWer	the	end	of	file	has	been	reached	

10/14/16 

line	=	infile.readline()	
while	line	!=	""	:	
				#	Process	the	line.	
				line	=	infile.readline()	

Page 14 


