Chapter Seven

FILES AND EXCEPTIONS

Chapter Goals

To read and write text files

To process collections of data

To process command line arguments

To raise and handle exceptions

In this chapter, you will learn how to write programs that
manipulate files

10/14/16 Page 2

Contents

* Reading and Writing Text Files
e Text Input and Output

10/14/16 Page 3

Reading and Writing Text Files

SECTION 7.1

10/14/16 4

Reading and Writing Text Files

* Text files are very commonly used to store information
* They are the most ‘portable’ types of data files

* Examples of text files include files that are created with a simple text

editor, such as Windows Notepad, and Python source code and HTML
files

10/14/16 Page 5

Opening Files: Reading

* To access a file, you must first open it

e Suppose you want to read data from a file named input.txt, located in
the same directory as the program

* To open a file for reading, you must provide the name of the file as the
first argument to the open function and the string "r" as the second
argument:

infile = open("input.txt", "r")

10/14/16 Page 6

Opening Files: Reading (2)

* Important things to keep in mind:

 When opening a file for reading, the file must exist (and otherwise
be accessible) or an exception occurs

* The file object returned by the open function must be saved in a
variable

» All operations for accessing a file are made via the file object

10/14/16 Page 7

Opening Files: Writing

* To open a file for writing, you provide the name of the file as the first
argument to the open function and the string "w" as the second
argument:

outfile = open("output.txt", "w")

* If the output file already exists, it is emptied before the new data is
written into it

 If the file does not exist, an empty file is created

10/14/16 Page 8

Closing Files: Important

 When you are done processing a file, be sure to close the file using the
close() method:

infile.close()
outfile.close()

* If your program exits without closing a file that was opened for writing,
some of the output may not be written to the disk file

10/14/16 Page 9

Syntax: Opening And Closing Files

The nawe of the file to open

\ Specify the mode for the file:
Store the returned infile = open("input.txt", "r") “r" for reading (input)
file objects in variables. "w" for writing (output)

outfile = open("output.txt", "w")

Read data from infile.
Write data to outfile.
If you fail to close an output
Close files after the — jnfite.close() file, some data may not be
data is processed. outfile.close() written fo the file.

10/14/16 Page 10

Reading From a File

* To read a line of text from a file, call the readline() method with the file
object that was returned when you opened the file:

line = infile.readline()

 When a file is opened, an input marker is positioned at the beginning
of the file

* The readline() method reads the text, starting at the current position
and continuing until the end of the line is encountered

e The input marker is then moved to the next line

10/14/16 Page 11

Reading From a File (2)

* For example, suppose input.txt contains the lines
flying
circus

* The first call to readline() returns the string "flying\n"

* Recall that \n denotes the newline character that indicates the end of the
line

* |f you call readline() a second time, it returns the string "circus\n"

10/14/16 Page 12

Reading From a File (3)

e Calling readline() again yields the empty string "" because you have
reached the end of the file

 If the file contains a blank line, then readline() returns a string
containing only the newline character "\n"

10/14/16 Page 13

Reading Multiple Lines From a File

* You repeatedly read a line of text and process it until the sentinel value
is reached:

* The sentinel value is an empty string, which is returned by the
readline() method after the end of file has been reached

line = infile.readline()
while line != "" :

Process the line.
line = infile.readline()

10/14/16 Page 14

