
SETS AND DICTIONARIES

Chapter 8

Chapter Contents

10/19/16 Page 2

Sets Dictionaries
Complex

Data
Structures

Chapter Goals
•  To	build	and	use	a	set	container	
•  To	learn	common	set	opera2ons	for	processing	data	

•  To	build	and	use	a	dic2onary	container	
•  To	work	with	a	dic2onary	for	table	lookups	

•  To	work	with	complex	data	structures	

10/19/16

In this chapter, we will learn how to work with two more types of
containers (sets and dictionaries) as well as how to combine
containers to model complex structures.

Page 3

Sets
SECTION 8.1

10/19/16 4

Sets
•  A	set	is	a	container	that	stores	a	collec2on	of	unique	values	
•  Unlike	a	list,	the	elements	or	members	of	the	set	are	not	stored	in	any	
par2cular	order	and	cannot	be	accessed	by	posi2on	

•  Opera2ons	are	the	same	as	the	opera2ons	performed	on	sets	in	
mathema2cs	

•  Because	sets	do	not	need	to	maintain	a	par2cular	order,	set	opera2ons	
are	much	faster	than	the	equivalent	list	opera2ons	

10/19/16 Page 5

Example Set
•  This	set	contains	three	sets	of	colors––the	colors	of	the	Bri2sh,	
Canadian,	and	Italian	flags	

•  In	each	set,	the	order	does	not	maEer,	and	the	colors	are	not	
duplicated	in	any	one	of	the	sets	

10/19/16 Page 6

Creating and Using Sets

•  Alterna2vely,	you	can	use	the	set()	func2on	to	convert	any	sequence	
into	a	set:	

cast	=	{	"Luigi",	"Gumbys",	"Spiny"	}	

names	=	["Luigi",	"Gumbys",	"Spiny"]	
cast	=	set(names)	

10/19/16 Page 7

•  To	create	a	set	with	ini2al	elements,	you	can	specify	the	elements	
enclosed	in	braces,	just	like	in	mathema2cs:	

Creating an Empty Set
•  For	historical	reasons,	you	cannot	use	{}	to	make	an	empty	set	in	
Python	

•  Instead,	use	the	set()	func2on	with	no	arguments:	

cast	=	set()	

numberOfCharacters	=	len(cast)			#	In	this	case	it’s	zero	

10/19/16 Page 8

•  As	with	any	container,	you	can	use	the	len()	func2on	to	obtain	the	
number	of	elements	in	a	set:	

Set Membership: in	
•  To	determine	whether	an	element	is	contained	in	the	set,	use	the	in	
operator	or	its	inverse,	the	not	in	operator:	

if	"Luigi"	in	cast	:	
				print("Luigi	is	a	character	in	Monty	Python’s	Flying	Circus.")	
else	:	
				print("Luigi	is	not	a	character	in	the	show.")	

10/19/16 Page 9

Accessing Set Elements

•  Note	that	the	order	in	which	the	elements	of	the	set	are	visited	
depends	on	how	they	are	stored	internally	

print("The	cast	of	characters	includes:")	
for	character	in	cast	:	
				print(character)	

10/19/16 Page 10

•  Because	sets	are	unordered,	you	cannot	access	the	elements	of	a	set	
by	posi2on	as	you	can	with	a	list	

•  We	use	a	for	loop	to	iterate	over	the	individual	elements:	

Accessing Elements (2)
•  For	example,	the	previous	loop	above	displays	the	following:	
The	cast	of	characters	includes:	

Gumbys	

Spiny	

Luigi	

•  Note	that	the	order	of	the	elements	in	the	output	is	different	from	the	
order	in	which	the	set	was	created	

10/19/16 Page 11

Displaying Sets In Sorted Order
•  Use	the	sorted()	func2on,	which	returns	a	list	(not	a	set)	of	the	
elements	in	sorted	order	

•  The	following	loop	prints	the	cast	in	sorted	order:	

for	actor	in	sorted(cast)	:	
				print(actor)	

10/19/16 Page 12

Adding Elements
•  Sets	are	mutable	collec2ons,	so	you	can	add	elements	by	using	the	
add()	method:	

cast	=	set(["Luigi",	"Gumbys",	"Spiny"])			#1	
cast.add("Arthur")																									#2	
cast.add("Spiny")																										#3	

10/19/16

Spiny	is	already	in	the	set,	so	there	is	
no	effect	on	the	set		

Arthur	is	not	in	the	set,	so	it	is	added	
to	the	set	and	the	size	of	the	set	is	
increased	by	one	

Page 13

Removing Elements: discard()	
•  The	discard()	method	removes	an	element	if	the	element	exists:	

cast.discard("Arthur")		#4	
	

cast.discard("The	Colonel")			#	Has	no	effect	

10/19/16 Page 14

•  It	has	no	effect	if	the	given	element	is	not	a	member	of	the	set:	

Removing Elements: remove()

•  For	this	class	we	will	use	the	discard()	method	

cast.remove("The	Colonel")			#	Raises	an	exception	

10/19/16 Page 15

•  The	remove()	method,	on	the	other	hand,	removes	an	element	if	it	
exists,	but	raises	an	excep2on	if	the	given	element	is	not	a	member	of	
the	set:	

Removing Elements: clear()
•  Finally,	the	clear()	method	removes	all	elements	of	a	set,	leaving	the	
empty	set:	

cast.clear()	#	cast	now	has	size	0	

10/19/16 Page 16

Example

10/19/16 Page 17

Subsets
•  A	set	is	a	subset	of	another	set	if	and	only	if	every	element	of	the	first	
set	is	also	an	element	of	the	second	set	

•  In	the	image	below,	the	Canadian	flag	colors	are	a	subset	of	the	Bri2sh	
colors	

•  The	Italian	flag	colors	are	not.	

10/19/16 Page 18

The issubset()	Method
•  The	issubset()	method	returns	True	or	False	to	report	whether	
one	set	is	a	subset	of	another:	

canadian	=	{	"Red",	"White"	}	
british	=	{	"Red",	"Blue",	"White"	}	
italian	=	{	"Red",	"White",	"Green"	}	
	
#	True	
if	canadian.issubset(british)	:	
				print("All	Canadian	flag	colors	occur	in	the	British	flag.")	
	
#	True	
if	not	italian.issubset(british)	:	
				print("At	least	one	of	the	colors	in	the	Italian	flag	does		
							not.")	

10/19/16 Page 19

Set Equality / Inequality
•  We	test	set	equality	with	the	“==“	and	“!=“	operators	

•  Two	sets	are	equal	if	and	only	if	they	have	exactly	the	same	elements	

french	=	{	"Red",	"White",	"Blue"	}	
if	british	==	french	:	
				print("The	British	and	French	flags	use	the	same	colors.")	

10/19/16 Page 20

Set Union: union()	

•  Both	the	Bri2sh	and	Italian	sets	contain	the	colors	Red	and	White,	but	
the	union	is	a	set	and	therefore	contains	only	one	instance	of	each	
color	

#	inEither:	The	set	{"Blue",	"Green",	"White",	"Red"}	
inEither	=	british.union(italian)	

Note	that	the	union()		method	returns	
a	new	set.	It	does	not	modify	either	of	
the	sets	in	the	call	

10/19/16 Page 21

•  The	union	of	two	sets	contains	all	of	the	elements	from	both	sets,	with	
duplicates	removed	

Set Intersection: intersection()	
•  The	intersection	of	two	sets	contains	all	of	the	elements	that	are	in	
both	sets	

#	inBoth:	The	set	{"White",	"Red"}	
inBoth	=	british.intersection(italian)	

10/19/16 Page 22

Difference of Two Sets: difference()	
•  The	difference	of	two	sets	results	in	a	new	set	that	contains	those	
elements	in	the	first	set	that	are	not	in	the	second	set	

print("Colors	that	are	in	the	Italian	flag	but	not	the	
British:")	

print(italian.difference(british))	#	Prints	{'Green'}	

10/19/16 Page 23

Common Set Operations

10/19/16 Page 24

Common Set Operations (2)

10/19/16

Remember:	union,	intersection	and	difference	return	new	sets			
They	do	not	modify	the	set	they	are	applied	to		

Page 25

Simple Examples
•  Open	the	file:	set	examples.py	

10/19/16 Page 26

Set Example: Spell Checking
•  The	program	spellcheck.py	reads	a	file	that	contains	correctly	spelled	
words	and	places	the	words	in	a	set	

•  It	then	reads	all	words	from	a	document––here,	the	book	Alice	in	
Wonderland––into	a	second	set	

•  Finally,	it	prints	all	words	from	the	document	that	are	not	in	the	set	of	
correctly	spelled	words	

•  Open	the	file	spellcheck.py	

10/19/16 Page 27

Example: Spellcheck.py

10/19/16 Page 28

Example: Spellcheck.py	

10/19/16 Page 29

Execution: Spellcheck.py

10/19/16 Page 30

Programming Tip
•  When	you	write	a	program	that	manages	a	collec2on	of	unique	items,	
sets	are	far	more	efficient	than	lists		

•  Some	programmers	prefer	to	use	the	familiar	lists,	replacing	

itemSet.add(item)	

if	(item	not	in	itemList)	
				itemList.append(item)	

10/19/16 Page 31

			with:	

•  However,	the	resul2ng	program	is	much	slower.	
•  The	speed	factor	difference	is	over	10	2mes	

Counting Unique Words

10/19/16 32

Problem Statement
•  We	want	to	be	able	to	count	the	number	of	unique	words	in	a	text	
document	
•  “Mary	had	a	liEle	lamb”	has	57	unique	words	

•  Our	task	is	to	write	a	program	that	reads	in	a	text	document	and	
determines	the	number	of	unique	words	in	the	document	

10/19/16 Page 33

Step One: Understand the Task
•  To	count	the	number	of	unique	words	in	a	text	document	we	need	to	
be	able	to	determine	if	a	word	has	been	encountered	earlier	in	the	
document	
•  Only	the	first	occurrence	of	a	word	should	be	counted	

•  The	easiest	way	to	do	this	is	to	read	each	word	from	the	file	and	add	it	
to	the	set	
•  Because	a	set	cannot	contain	duplicates	we	can	use	the	add	method	
•  The	add	method	will	prevent	a	word	that	was	encountered	earlier	
from	being	added	to	the	set	

•  A_er	we	process	every	word	in	the	document	the	size	of	the	set	will	be	
the	number	of	unique	words	contained	in	the	document	

10/19/16 Page 34

Step Two: Decompose the Problem
The	problem	can	be	split	into	several	simple	steps:	

Create	an	empty	set	

for	each	word	in	the	text	document	
Add	the	word	to	the	set	

Number	of	unique	words	=	the	size	of	the	set	

•  Crea2ng	the	empty	set,	adding	an	element	to	the	set,	and	determining	
the	size	of	the	set	are	standard	set	opera2ons	

•  Reading	the	words	in	the	file	can	be	handled	as	a	separate	task	

10/19/16 Page 35

Step Three: Build the Set
•  We	need	to	read	individual	words	from	the	file.		For	simplicity	in	our	
example	we	will	use	a	literal	file	name	

inputFile	=	open(“nurseryrhyme.txt”,	“r”)	
For	line	in	inputFile	:	

	theWords	=	line.split()	
	For	words	in	theWords	:	
	 	Process	word	

•  To	count	unique	words	we	need	to	remove	any	nonleEers	and		remove	
capitaliza2on	

•  We	will	design	a	func2on	to	“clean”	the	words	before	we	add	them	to	
the	set	

10/19/16 Page 36

Step Four: Clean the Words
•  To	strip	out	all	the	characters	that	are	not	leEers	we	will	iterate	
through	the	string,	one	character	at	a	2me,	and	build	a	new	“clean”	
word	

def	clean(string)	:	
	result	=	“”	
	for	char	in	string	:	
	 	if	char.isalpha()	:	
	 	 	result	=	result	+	char	
return	result.lower()	

10/19/16 Page 37

Step Five: Some Assembly Required
•  Implement	the	main()	func2on	and	combine	it	with	the	other	
func2ons	

•  Open	the	file:		countwords.py	

10/19/16 Page 38

