
Dictionaries
SECTION 8.2

10/21/16 39

Dictionaries
•  A	dic&onary	is	a	container	that	keeps	associa&ons	between	keys	and	
values	

•  Every	key	in	the	dic&onary	has	an	associated	value	
•  Keys	are	unique,	but	a	value	may	be	associated	with	several	keys	

•  Example	(the	mapping	between	the	key	and	value	is	indicated	by	an	
arrow):	

10/21/16 Page 40

Syntax: Sets and Dictionaries

10/21/16 Page 41

Creating Dictionaries
•  Suppose	you	need	to	write	a	program	that	looks	up	the	phone	number	
for	a	person	in	your	mobile	phone’s	contact	list	

•  You	can	use	a	dic&onary	where	the	names	are	keys	and	the	phone	
numbers	are	values	

contacts	=	{	"Fred":	7235591,	"Mary":	3841212,	"Bob":	
3841212,	"Sarah":	2213278	}	

10/21/16 Page 42

Duplicating Dictionaries: Dict()	
•  You	can	create	a	duplicate	copy	of	a	dic&onary	using	the	dict()	
func&on:	

oldContacts	=	dict(contacts)	

10/21/16 Page 43

Accessing Dictionary Values []	
•  The	subscript	operator	[]	is	used	to	return	the	value	associated	with	a	
key	

•  The	statement	

The	key	supplied	to	the	subscript	operator	must	be	
a	valid	key	in	the	dic6onary	or	

a	KeyError	excep6on	will	be	raised	

#	prints	7235591.	
print("Fred's	number	is",	

contacts["Fred"])	

10/21/16 Page 44

•  Note	that	the	dic&onary	is	not	a	sequence-type	container	like	a	list.		
•  You	cannot	access	the	items	by	index	or	posi&on	
•  A	value	can	only	be	accessed	using	its	associated	key	

Dictionaries: Checking Membership
•  To	find	out	whether	a	key	is	present	in	the	dic&onary,	use	the	in	(or	
not	in)	operator:	

if	"John"	in	contacts	:	
				print("John's	number	is",	contacts["John"])	
else	:	
				print("John	is	not	in	my	contact	list.")	

10/21/16 Page 45

Default Keys
•  OKen,	you	want	to	use	a	default	value	if	a	key	is	not	present	
•  Instead	of	using	the	in	operator,	you	can	simply	call	the	get()	
method	and	pass	the	key	and	a	default	value	

•  The	default	value	is	returned	if	there	is	no	matching	key	

number	=	contacts.get("Fred",	411)	
print("Dial	"	+	number)	

10/21/16 Page 46

Adding/Modifying Items
•  A	dic&onary	is	a	mutable	container	

•  You	can	add	a	new	item	using	the	subscript	operator	[]	much	as	you	
would	with	a	list	

contacts["John"]	=	4578102		#1	

contacts["John"]	=	2228102		#2	

10/21/16 Page 47

•  To	change	the	value	associated	with	a	given	key,	set	a	new	value	using	
the	[]	operator	on	an	exis&ng	key:	

	

Adding New Elements Dynamically

•  and	add	new	items	as	needed:	

favoriteColors	=	{}	

favoriteColors["Juliet"]	=	"Blue"	
favoriteColors["Adam"]	=	"Red"	
favoriteColors["Eve"]	=	"Blue"	
favoriteColors["Romeo"]	=	"Green"	

10/21/16 Page 48

•  Some&mes	you	may	not	know	which	items	will	be	contained	in	the	
dic&onary	when	it’s	created	

•  You	can	create	an	empty	dic&onary	like	this:	

Removing Elements
•  To	remove	an	item	from	a	dic&onary,	call	the	pop()	method	with	the	
key	as	the	argument:	

contacts	=	{	"Fred":	
7235591,	"Mary":	3841212,	
"Bob":	3841212,	"Sarah":	
2213278	}		

contacts.pop("Fred")												

10/21/16 Page 49

•  This	removes	the	en&re	item,	both	the	key	and	its	associated	value.	

Removing and Storing Elements
•  The	pop()	method	returns	the	value	of	the	item	being	removed,	so	
you	can	use	it	or	store	it	in	a	variable:	

fredsNumber	=	contacts.pop("Fred")	

if	"Fred"	in	contacts	:	
				contacts.pop("Fred")	

10/21/16 Page 50

•  Note:	If	the	key	is	not	in	the	dic&onary,	the	pop	method	raises	a	
KeyError	excep&on	
•  To	prevent	the	excep&on	from	being	raised,	you	should	test	for	the	
key	in	the	dic&onary:	

Traversing a Dictionary
•  You	can	iterate	over	the	individual	keys	in	a	dic&onary	using	a	for	
loop:	

print("My	Contacts:")	
for	key	in	contacts	:	
				print(key)	

Note	that	the	dic&onary	stores	its	
items	in	an	order	that	is	op&mized	

for	efficiency,	
which	may	not	be	the	order	in	which	

they	were	added	

10/21/16 Page 51

•  The	result	of	this	code	fragment	is	shown	below:	
My	Contacts:	
Sarah	
Bob	
John	
Mary	
Fred	

Traversing a Dictionary: In Order
•  To	iterate	through	the	keys	in	sorted	order,	you	can	use	the	sorted()	
func&on	as	part	of	the	for	loop	:	

print("My	Contacts:")	
for	key	in	sorted(contacts)	:	
				print("%-10s	%d"	%	(key,	contacts[key]))	

10/21/16 Page 52

•  Now,	the	contact	list	will	be	printed	in	order	by	name:	
	My	Contacts:	
	Bob	3841212	
	Fred	7235591	
	John	4578102	
	Mary	3841212	
	Sarah	2213278	

Iterating Dictionaries More Efficiently
•  Python	allows	you	to	iterate	over	the	items	in	a	dic&onary	using	the	
items()	method	

•  This	is	a	bit	more	efficient	than	itera&ng	over	the	keys	and	then	looking	
up	the	value	of	each	key	

•  The	items()	method	returns	a	sequence	of	tuples	that	contain	the	
keys	and	values	of	all	items	
•  Here	the	loop	variable	item	will	be	assigned	a	tuple	that	contains	
the	key	in	the	first	slot	and	the	value	in	the	second	slot	

for	item	in	contacts.items()	:	
				print(item[0],	item[1])	

10/21/16 Page 53

Storing Data Records
•  Data	records,	in	which	each	record	consists	of	mul&ple	fields,	are	very	
common	

•  In	some	instances,	the	individual	fields	of	the	record	were	stored	in	a	
list	to	simplify	the	storage	

•  But	this	requires	remembering	in	which	element	of	the	list	each	field	is	
stored		
•  This	can	introduce	run-&me	errors	into	your	program	if	you	use	the	
wrong	list	element	when	processing	the	record	

•  In	Python,	it	is	common	to	use	a	dic&onary	to	store	a	data	record	

10/21/16 Page 54

Dictionaries: Data Records
•  You	create	an	item	for	each	data	record	in	which	the	key	is	the	field	
name	and	the	value	is	the	data	value	for	that	field	

•  For	example,	this	dic&onary	named	record	stores	a	single	student	
record	with	fields	for	ID,	name,	class,	and	GPA:	

record	=	{	"id":	100,	"name":	"Sally	Roberts",	"class":	2,	
"gpa":	3.78	}	

10/21/16 Page 55

Dictionaries: Data Records
•  To	extract	records	from	a	file,	we	can	define	a	func&on	that	reads	a	
single	record	and	returns	it	as	a	dic&onary	

•  The	file	to	be	read	contains	records	made	up	of	country	names	and	
popula&on	data	separated	by	a	colon:	

def	extractRecord(infile)	:	
				record	=	{}	
				line	=	infile.readline()	
				if	line	!=	""	:	
								fields	=	line.split(":")	
								record["country"]	=	fields[0]	
								record["population"]	=	int(fields[1])	
				return	record	

10/21/16 Page 56

Dictionaries: Data Records
•  The	dic&onary	record	that	is	returned	has	two	items,	one	with	the	
key	"country"	and	the	other	with	the	key	"population"	

•  This	func&on’s	result	can	be	used	to	print	all	of	the	records	to	the	
terminal	

infile	=	open("populations.txt",	"r")	
record	=	extractRecord(infile)	
while	len(record)	>	0	:	
				print("%-20s	%10d"	%	(record["country"],						
							record["population"]))	
				record	=	extractRecord(infile)	

10/21/16 Page 57

Common Dictionary Operations (1)

10/21/16 Page 58

Common Dictionary Operations (2)

10/21/16 Page 59

