Chapter Nine

OBJECTS AND CLASSES



Chapter Goals

To understand the concepts of classes, objects and encapsulation

To implement instance variables, methods and constructors

To be able to design, implement, and test your own classes

To understand the behavior of object references

In this chapter, you will learn how to discover,
specify, and implement your own classes, and how
to use them in your programs.

10/28/16 2



Contents

* Object-Oriented Programming

* Implementing a Simple Class

* Specifying the Public Interface of a Class
* Designing the Data Representation

* Constructors

* Implementing Methods

e Testing a Class

* Problem Solving: Tracing Objects

* Problem Solving: Patterns for Object data
e Object References

* Application: Writing a Fraction Class

10/28/16 3



Object-Oriented Programming

* You have learned structured programming
* Breaking tasks into subtasks

* Writing re-usable methods to handle tasks

* We will now study Objects and Classes
* To build larger and more complex programs

* To model objects we use in the world

A class describes objects with the same behavior.
For example, a Car class describes all passenger vehicles that
have a certain capacity and shape.

10/28/16 4



Objects and Programs

* You have learned how to structure your programs by decomposing
tasks into functions

e Experience shows that it does not go far enough

It is difficult to understand and update a program that consists of a
large collection of functions

* To overcome this problem, computer scientists invented object-

oriented programming, a programming style in which tasks are solved
by collaborating objects

* Each object has its own set of data, together with a set of methods
that act upon the data

10/28/16 >



Objects and Programs

* You have already experienced this programming style when you used
strings, lists, and file objects. Each of these objects has a set of
methods

* For example, you can use the insert() or remove() methods to
operate on list objects

10/28/16 0



Python Classes

* A class describes a set of objects with the same behavior.
* For example, the str class describes the behavior of all strings

* This class specifies how a string stores its characters, which methods
can be used with strings, and how the methods are implemented.

* For example, when you have a str object, you can invoke the upper
method:

"Hello, World".upper()

String object Method of class String

10/28/16 !



Python Classes

* In contrast, the 1ist class describes the behavior of objects that can
be used to store a collection of values

* This class has a different set of methods

* For example, the following call would be illegal—the 1ist class has
no upper () method

["Hello", "World"].upper()

* However, 1ist has a pop() method, and the following call is legal

["Hello", "World"].pop()

10/28/16 8



Public Interfaces

* The set of all methods provided by a class, together with a description
of their behavior, is called the public interface of the class

 When you work with an object of a class, you do not know how the
object stores its data, or how the methods are implemented

* You need not know how a str object organizes a character
sequence, or how a list stores its elements

* All you need to know is the public interface—which methods you can
apply, and what these methods do

10/28/16 9



Public Interfaces

* The process of providing a public interface, while hiding the
implementation details, is called encapsulation

 If you work on a program that is being developed over a long period of
time, it is common for implementation details to change, usually to
make objects more efficient or more capable

 When the implementation is hidden, the improvements do not
affect the programmers who use the objects

10/28/16 10



Check yourself

1. Is the method call "He110, World".print() legal? Why or why not?

2. When using a str object, you do not know how it stores its characters. How can you access them?

3. Describe a way in which a str object might store its characters.

4. Suppose the providers of your Python interpreter decide to change the way that a str object stores its
characters, and they update the str method implementations accordingly. Which parts of your code do
you need to change when you get the new interpreter?

10/28/16



Implementing a Simple Class

 Example:

e Tally Counter: A class that models a mechanical device that is used to
count people

* For example, to find out how many people attend a concert or board
a bus

 What should it do?
* Increment the tally

e Get the current total

10/28/16 12



Using the Counter Class

First, we construct an object of the class (object construction will be
covered shortly):

In Python, you don’t explicitly declare instance variables

* Instead, when one first assigns a value to an instance variable, the
instance variable is created

tally = Counter() # Creates an instance

10/28/16

13



Using the Counter Class

* Next, we invoke methods on our object

tally.reset()
tally.click()
tally.click()

result = tally.getValue() # Result is 2
tally.click()

result = tally.getValue() # Result is 3

10/28/16

14



Instance Variables

* An object stores its data in instance variables

* An instance of a class is an object of the class

* In our example, each Counter object has a single instance variable
named value

* For example, if concertCounter and boardingCounter are two

objects of the Counter class, then each object has its own value
variable

concertCounter — i PN Counter

_value =

Instance

) variables
boardingCounter

— >~ Counter

_value =

10/28/16

15



