Syntax: Instance Methods

 Use instance variables inside methods of the class

e Similar to the constructor, all other instance methods must include
the self parameter as the first parameter

* You must specify the self implicit parameter when using instance
variables inside the class

Syntax class ClassName :

def methodName(self, parameterName,, parameterName,, . . .) :

method body

Every wmethod wust include the special
class CashRegister :/ sef parameter variable. It is automatically
- e assigned a value when the method is called.
def addItem(self, price) :
self._itemCount = self._itemCount + 1

Instance variables are% self._totalPrice = self._totalPrice + price

referenced using the S Local variable
self paraweter.

10/28/16 41

Invoking Instance Methods

* As with the constructor, every method must include the special self
parameter variable, and it must be listed first.

 When a method is called, a reference to the object on which the

method was invoked (registeril) is automatically passed to the self
parameter variable:

registerl.addItem(2.95)

def addItem(self, price):

10/28/16

42

Tracing The Method Call

registerl = CashRegister() #1 New object
registerl.addItem(2.95) #2 Calling method
#3 After method

o Before the method call.

def addItem(self, price):

regstertt T CashRegister self. itemCount =
o During the execution of the method :atlle'rr‘lgg?g;ce:l . add%tem(l .95). € 1-F ’ _it em(,:O u nt T 1
” self. totalPrice =
registerl =~ CashRegister self. totalPrice + price

0
0

celf = / _itemCount

_totalPrice

o After the method call.

RedlisEERls = CashRegister

1
2.95

_itemCount

_totalPrice

10/28/16 43

Accessing Instance Variables

* To access an instance variable, such as _itemCount or totalPrice,

in a method, you must access the variable name through the self
reference

* This indicates that you want to access the instance variables of the

object on which the method is invoked, and not those of some other
CashRegister object

* The first statement in the addItem() method is
self. itemCount = self. itemCount + 1

10/28/16 44

Accessing Instance Variables

 Which itemCount isincremented?
* In this call, it is the _itemCount of the registerl object.

registerl = By - CashRegister

celf = / _itemCount

_totalPrice

0
0

price = 2.95

10/28/16

45

Calling One Method Within Another

* When one method needs to call another method on the same object,
you invoke the method on the self parameter

def addItems(self, quantity, price) :
for i in range(quantity) :
self.addItem(price)

10/28/16

46

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Example: CashRegister.py (1)

class CashRegister :

Constructs a cash register with cleared item count and total.

#

def __init__(self) :
self._1temCount =
self._totalPrice =

Adds an item to this cash register.

@param price the price of this item

=

def addItem(self, price) :
self._itemCount = self._itemCount +
self._totalPrice = self._totalPrice + price

Gets the price of all items in the current sale.
@return the total price

4 27
def getTotal(self) : 28
return self._totalPrice 29
30

31

32

33

34

35

36

37

10/28/16

Gets the number of items in the current sale.
Q@return the item count
#

def getCount(self) :
return self._itemCount

Clears the item count and the total.
#
def clear(self) :
self._1temCount =
self._totalPrice =

47

Programming Tip 9.2 w

* Instance variables should only be defined in the constructor

* All variables, including instance variables, are created at run time

* There is nothing to prevent you from creating instance variables in
any method of a class

e The constructor is invoked before any method can be called, so any
instance variables that were created in the constructor are sure to be
available in all methods

10/28/16 48

Class Variables

* They are a value properly belongs to a class, not to any object of the
class

* Class variables are often called “static variables”

Class variables are declared at the same level as methods
* |n contrast, instance variables are created in the constructor

10/28/16

49

Class Variables: Example (1)

 We want to assign bank account numbers sequentially: the first
account is assigned number 1001, the next with number 1002, and so
on

e To solve this problem, we need to have a single value of
_lastAssignedNumber that is a property of the class, not any object
of the class

class BankAccount :
_lastAssignedNumber = 1000 # A class variable
def _ _init_(self) :
self. balance = ©
BankAccount. lastAssignedNumber =
BankAccount. lastAssignedNumber + 1
self. accountNumber =
BankAccount. lastAssignedNumber

10/28/16

50

Class Variables: Example (2)

e Every BankAccount object has its own balance and _account-
Number instance variables, but there is only a single copy of the
_lastAssignedNumber variable

* That variable is stored in a separate location, outside any BankAccount
object

* Like instance variables, class variables should always be private to
ensure that methods of other classes do not change their values.
However, class constants can be public

10/28/16 51

Class Variables: Example (3)

* For example, the BankAccount class can define a public constant value,
such as

class BankAccount :
OVERDRAFT_FEE = 29.95

 Methods from any class can refer to such a constant as
BankAccount.OVERDRAFT_FEE

10/28/16 52

Testing a Class

* In the long run, your class may become a part of a larger program that interacts
with users, stores data in files, and so on

* You should always test your class in isolation integrating a class into a program

* Testing in isolation, outside a complete program, is called unit testing

10/28/16 53

Choices for Testing: The Python shell

* Some interactive development environments provide access to the
Python shell in which individual statements can be executed

* You can test a class simply by constructing an object, calling methods,
and verifying that you get the expected return values

>>> from cashregister import CashRegister
>>> reg = CashRegister()

>>> reg.addItem(1.95)

>>> reg.addItem(0.95)

>>> reg.addItem(2.50)

>>> print(reg.getCount())

>>> print(reg.getTotal())
5.4

>>>

10/28/16

54

Choices for Testing: Test Drivers

* Interactive testing is quick and convenient but it has a drawback
 When you find and fix a mistake, you need to type in the tests again

* As your classes get more complex, you should write tester programs

* Atester program is a driver module that imports the class and
contains statements to run methods of your class

10/28/16

55

Steps Performed by a Tester Program

Construct one or more objects of the class that is being tested

Invoke one or more methods

1.

2

3. Print out one or more results
4. Print the expected results

5

Compare the computed results with the expected

10/28/16

56

Example Test Program

* |t runs and tests the methods of the CashRegister class

5 from cashregister import CashRegister
6

7 registerl = CashRegister()

8 registerl.addItem()

9 registerl.addItem()

10 registerl.addItem()
11 print(registerl.getCount())

12 print("Expected: 3")
13 print("%.2f" % registerl.getTotal())
14 print("Expected: 5.40")
Program execution
3
Expected: 3
5.40

Expected: 5.40

10/28/16

