
41 

Syntax: Instance Methods 
•  Use	instance	variables	inside	methods	of	the	class	

•  Similar	to	the	constructor,	all	other	instance	methods	must	include	
the	self	parameter	as	the	first	parameter	

•  You	must	specify	the	self	implicit	parameter	when	using	instance	
variables	inside	the	class	

10/28/16 



42 

Invoking Instance Methods 
•  As	with	the	constructor,	every	method	must	include	the	special	self	
parameter	variable,	and	it	must	be	listed	first.		

•  When	a	method	is	called,	a	reference	to	the	object	on	which	the	
method	was	invoked	(register1)	is	automaCcally	passed	to	the	self	
parameter	variable:	

register1.addItem(2.95)	
	

def	addItem(self,	price):	

10/28/16 



43 

Tracing The Method Call 
register1	=	CashRegister()			#1	New	object	
register1.addItem(2.95)						#2		Calling	method	
…																												#3	After	method	
	

def	addItem(self,	price):	
			self._itemCount	=		
						self._itemCount	+	1							
			self._totalPrice	=		
						self._totalPrice	+	price	

10/28/16 



44 

Accessing Instance Variables 
•  To	access	an	instance	variable,	such	as	_itemCount	or	_totalPrice,	
in	a	method,	you	must	access	the	variable	name	through	the	self	
reference	
•  This	indicates	that	you	want	to	access	the	instance	variables	of	the	
object	on	which	the	method	is	invoked,	and	not	those	of	some	other	
CashRegister	object	

•  The	first	statement	in	the	addItem()	method	is	
self._itemCount	=	self._itemCount	+	1	

10/28/16 



45 

Accessing Instance Variables 
•  Which	_itemCount	is	incremented?		

•  In	this	call,	it	is	the	_itemCount	of	the	register1	object.	

10/28/16 



46 

Calling One Method Within Another 
•  When	one	method	needs	to	call	another	method	on	the	same	object,	
you	invoke	the	method	on	the	self	parameter	

def	addItems(self,	quantity,	price)	:	
				for	i	in	range(quantity)	:	
								self.addItem(price)	

10/28/16 



47 

Example: CashRegister.py (1) 

10/28/16 



48 

Programming Tip 9.2 
•  Instance	variables	should	only	be	defined	in	the	constructor	
•  All	variables,	including	instance	variables,	are	created	at	run	Cme	

•  There	is	nothing	to	prevent	you	from	creaCng	instance	variables	in	
any	method	of	a	class	

•  The	constructor	is	invoked	before	any	method	can	be	called,	so	any	
instance	variables	that	were	created	in	the	constructor	are	sure	to	be	
available	in	all	methods	

10/28/16 



49 

Class Variables 
•  They	are	a	value	properly	belongs	to	a	class,	not	to	any	object	of	the	
class	

•  Class	variables	are	oIen	called	“staCc	variables”	
•  Class	variables	are	declared	at	the	same	level	as	methods		

•  In	contrast,	instance	variables	are	created	in	the	constructor	

10/28/16 



50 

Class Variables: Example (1) 
•  We	want	to	assign	bank	account	numbers	sequenCally:	the	first	
account	is	assigned	number	1001,	the	next	with	number	1002,	and	so	
on	

•  To	solve	this	problem,	we	need	to	have	a	single	value	of	
_lastAssignedNumber	that	is	a	property	of	the	class,	not	any	object	
of	the	class	

class	BankAccount	:	
				_lastAssignedNumber	=	1000	#	A	class	variable	
				def	_	_init_	_(self)	:	
								self._balance	=	0	
								BankAccount._lastAssignedNumber	=						
											BankAccount._lastAssignedNumber	+	1	
								self._accountNumber	=		
											BankAccount._lastAssignedNumber	

10/28/16 



51 

Class Variables: Example (2) 
•  Every	BankAccount	object	has	its	own	_balance	and	_account-
Number	instance	variables,	but	there	is	only	a	single	copy	of	the	
_lastAssignedNumber	variable	

•  That	variable	is	stored	in	a	separate	locaCon,	outside	any	BankAccount	
object	

•  Like	instance	variables,	class	variables	should	always	be	private	to	
ensure	that	methods	of	other	classes	do	not	change	their	values.	
However,	class	constants	can	be	public	

10/28/16 



52 

Class Variables: Example (3) 
•  For	example,	the	BankAccount	class	can	define	a	public	constant	value,	
such	as	

class	BankAccount	:	
				OVERDRAFT_FEE	=	29.95	
				.	.	.	

10/28/16 

•  Methods	from	any	class	can	refer	to	such	a	constant	as	
BankAccount.OVERDRAFT_FEE	



53 

Testing a Class 
•  In	the	long	run,	your	class	may	become	a	part	of	a	larger	program	that	interacts	
with	users,	stores	data	in	files,	and	so	on	

•  You	should	always	test	your	class	in	isolaCon	integraCng	a	class	into	a	program	

•  TesCng	in	isolaCon,	outside	a	complete	program,	is	called	unit	tes(ng	

10/28/16 



54 

Choices for Testing: The Python shell 
•  Some	interacCve	development	environments	provide	access	to	the	
Python	shell	in	which	individual	statements	can	be	executed	

•  You	can	test	a	class	simply	by	construcCng	an	object,	calling	methods,	
and	verifying	that	you	get	the	expected	return	values	

>>>	from	cashregister	import	CashRegister	
>>>	reg	=	CashRegister()	
>>>	reg.addItem(1.95)	
>>>	reg.addItem(0.95)	
>>>	reg.addItem(2.50)	
>>>	print(reg.getCount())	
3	
>>>	print(reg.getTotal())	
5.4	
>>>	

10/28/16 



55 

Choices for Testing: Test Drivers 
•  InteracCve	tesCng	is	quick	and	convenient	but	it	has	a	drawback	

•  When	you	find	and	fix	a	mistake,	you	need	to	type	in	the	tests	again	

•  As	your	classes	get	more	complex,	you	should	write	tester	programs	
•  A	tester	program	is	a	driver	module	that	imports	the	class	and	
contains	statements	to	run	methods	of	your	class	

10/28/16 



56 

Steps Performed by a Tester Program 
1.  Construct	one	or	more	objects	of	the	class	that	is	being	tested	

2.  Invoke	one	or	more	methods	

3.  Print	out	one	or	more	results	

4.  Print	the	expected	results	

5.  Compare	the	computed	results	with	the	expected	

10/28/16 



57 

Example Test Program 
•  It	runs	and	tests	the	methods	of	the	CashRegister	class	

Program	execuCon	

10/28/16 


