
83

Writing a Fraction Class
•  So	far	we	have	worked	with	floa0ng-point	numbers	but	computers	
store	binary	values,	so	not	all	real	numbers	can	be	represented	
precisely	

•  In	applica0ons	where	the	precision	of	real	numbers	is	important,	we	
can	use	ra#onal	numbers	to	store	exact	values		
•  This	helps	to	reduce	or	eliminate	round-off	errors	that	can	occur	
when	performing	arithme0c	opera0ons	

•  A	ra0onal	number	is	a	number	that	can	be	expressed	as	a	ra0o	of	
two	integers:	7/8	

•  The	top	value	is	called	the	numerator	and	the	boFom	value,	which	
cannot	be	zero,	is	called	the	denominator	

11/4/16

84

Designing the Fraction Class
•  We	want	to	use	our	ra0onal	numbers	as	we	would	use	integers	and	
floa0ng	point	values	

•  Thus,	our	Fraction	class	must	perform	the	following	opera0ons:	
1.  Create	a	ra0onal	number	
2.  Access	the	numerator	and	denominator	values,	individually	
3.  Determine	if	the	ra0onal	number	is	nega0ve	or	zero	
4.  Perform	normal	mathema0cal	opera0ons	on	two	ra0onal	

numbers	(addi0on,	subtrac0on,	mul0plica0on,	division,	
exponen0a0on)	

5.  Logically	compare	two	ra0onal	numbers	
6.  Produce	a	string	representa0on	of	the	ra0onal	number	

•  The	objects	of	the	Frac0on	class	will	be	immutable	because	none	of	
the	opera0ons	modify	the	objects’	instance	variables	

11/4/16

85

Required Data Attributes
•  Because	a	ra0onal	number	consists	of	two	integers,	we	need	two	
instance	variables	to	store	those	values:	

self._numerator	=	0	
self._denominator	=	1	

11/4/16

•  At	no	0me	should	the	ra0onal	number	be	converted	to	a	floa0ng-point	
value	or	we	will	lose	the	precision	gained	from	working	with	ra0onal	
numbers	

86

Representing Values Equivalently
•  Signed	values	

•  Nega0ve	and	posi0ve	ra0onal	numbers	each	have	two	forms	that	
can	be	used	to	specify	the	corresponding	value	

•  Posi0ve	values	can	be	indicated	as	1/2 or –1/–2,	and	nega0ve	values	
as	–2/5 or 2/–5	

•  When	performing	an	arithme0c	opera0on	or	logically	comparing	
two	ra0onal	numbers,	it	will	be	much	easier	if	we	have	a	single	way	
to	represent	a	nega0ve	value	

•  For	simplicity,	we	choose	to	set	only	the	numerator	to	a	nega0ve	
value	when	the	ra0onal	number	is	nega0ve,	and	both	the	numerator	
and	denominator	will	be	posi0ve	integers	when	the	ra0onal	number	
is	posi0ve		

11/4/16

87

Representing Values Equivalently
•  Equivalent	frac0ons	

•  For	example,	1/4	can	be	wriFen	as	1/4,	2/8,	16/64,	or	123/492	
•  It	will	be	much	easier	to	perform	the	opera0on	if	the	number	is	
stored	in	reduced	form	

11/4/16

88

The Constructor (1)
•  Because	Fraction	objects	are	immutable,	their	values	must	be	set	
when	they	are	created.	This	requires	parameter	variables	for	both	the	
numerator	and	denominator	

def	_	_init_	_(self,	numerator,	denominator)	:	

11/4/16

•  The	method	must	check	for	special	cases:		
•  Zero	denominators	
•  The	number	represents	zero	or	a	nega0ve	number	

89

The Constructor
def	_	_init_	_(self,	numerator	=	0,	denominator	=	1)	:	
				if	denominator	==	0	:	
								raise	ZeroDivisionError("Denominator	cannot	be	zero.")	
				if	numerator	==	0	:	
								self._numerator	=	0	
								self._denominator	=	1	
				else	:	
								if	(numerator	<	0	and	denominator	>=	0	or	
												numerator	>=	0	and	denominator	<	0)	:	
											sign	=	-1	
								else	:	
											sign	=	1	

11/4/16

90

The Constructor
				a	=	abs(numerator)	
				b	=	abs(denominator)	
				while	a	%	b	!=	0	:	
								tempA	=	a	
								tempB	=	b	
								a	=	tempB	
								b	=	tempA	%	tempB	
				self._numerator	=	abs(numerator)							#	b	*	sign	
				self._denominator	=	abs(denominator)			#b	

11/4/16

91

Testing the Constructor
frac1	=	Fraction(1,	8)	#	Stored	as	1/8	
frac2	=	Fraction(-2,	-4)	#	Stored	as	1/2	
frac3	=	Fraction(-2,	4)	#	Stored	as	-1/2	
frac4	=	Fraction(3,	-7)	#	Stored	as	-3/7	
frac5	=	Fraction(0,	15)	#	Stored	as	0/1	
frac6	=	Fraction(8,	0)	#	Error!	exception	is	raised.	

11/4/16

92

Comparing Fractions (1)
•  In	Python,	we	can	define	and	implement	methods	that	will	be	called	
automa0cally	when	a	standard	Python	operator	(+,	*,	==,	<)	is	applied	
to	an	instance	of	the	class	

•  For	example,	to	test	whether	two	frac0ons	are	equal,	we	could	
implement	a	method:	
•  isequal()	and	use	it	as	follows:	

if	frac1.isequal(frac2)	:	
				print("The	fractions	are	equal.")	

11/4/16

93

Comparing Fractions (2)

	
•  Automa0cally	calls	this	method	when	we	compare	two	Fraction	
objects	using	the	==	operator:	

def	_	_eq_	_(self,	rhsValue)	:	
				return	(self._numerator	==	rhsValue.numerator	and	
												self._denominator	==	rhsValue.denominator)	

if	frac1	==	frac2	:	#	Calls	frac1._	_eq_	_(frac2)	
				print("The	fractions	are	equal.")	

11/4/16

•  Of	course,	we	would	prefer	to	use	the	operator	==	
•  This	is	achieved	by	defining	the	special	method:		

	_	_eq_	_():	
	

94

Special Methods

•  Then	the	_	_float_	_()	special	method	is	called.	

•  Here	is	a	defini0on	of	that	method:	

x	=	float(frac1)	

def	_	_float_	_(self)	:	
				return	self._numerator	/	self._denominator	

11/4/16

•  Some	special	methods	are	called	when	an	instance	of	the	class	is	
passed	to	a	built-in	func0on.	For	example,	suppose	you	aFempt	to	
convert	a	Fraction	object	to	a	floa0ng	point	number	using	the	
float()	func0on:	

95

Common Special Methods

11/4/16

96

Common Special Methods

11/4/16

97

Addition of Fractions
•  All	of	the	arithme0c	opera0ons	that	can	be	performed	on	a	Fraction	
object	should	return	the	result	in	a	new	Fraction	object	

•  For	example,	when	the	statement	below	is	executed,	frac1	should	be	
added	to	frac2	and	the	result	returned	as	a	new	Fraction	object	that	
is	assigned	to	the	newFrac	variable	

newFrac	=	frac1	+	frac2	

11/4/16

98

Fractional Addition
•  From	elementary	arithme0c,	you	know	that	two	frac0ons	must	have	a	
common	denominator	in	order	to	add	them.	If	they	do	not	have	a	
common	denominator,	we	can	s0ll	add	them	using	the	formula:	

11/4/16

99

Defining the Method For Addition
def	_	_add_	_(self,	rhsValue)	:	
				num	=	(self._numerator	*	rhsValue._denominator	+	
							self._denominator	*	rhsValue._numerator)	
				den	=	self._denominator	*	rhsValue._denominator	
				return	Fraction(num,	den)	

11/4/16

100

Logic: Less Than
•  Note	that	a / b < c / d	when	d · a < b · c.	(Mul0ply	both	sides	with	b ·

d.)	

•  Based	on	this	observa0on,	the	less	than	opera0on	is	implemented	by	
the	_	_lt_	_()	method	as	follows:	

def	_	_lt_	_(self,	rhsValue)	:	
				return	(self._numerator	*	rhsValue._denominator																
												self._denominator	*	rhsValue._numerator)	

11/4/16

101

Fraction.py	

11/4/16

102

Fraction.py	

11/4/16

103

Fraction.py	

11/4/16

104

Fraction.py

11/4/16

105

Checking Type
•  To	ensure	that	variables	are	the	correct	type,	Python	provides	the	
built-in	isinstance()	func0on	that	can	be	used	to	check	the	type	of	
object	referenced	by	a	variable.	

•  For	example,	the	constructor	for	the	Fraction	class	requires	two	
integers	

class	Fraction	:	
				def	_	_init_	_(self,	numerator,	denominator)	:	
								if	(not	isinstance(numerator,	int)	or	
												not	isinstance(denominator,	int))	:	
											raise	TypeError	
														("The	numerator	and	denominator	must	be	integers.")	

11/4/16

106

Summary: Classes and Objects
•  A	class	describes	a	set	of	objects	with	the	same	behavior	

•  Every	class	has	a	public	interface:	a	collec0on	of	methods	through	
which	the	objects	of	the	class	can	be	manipulated	

•  Encapsula0on	is	the	act	of	providing	a	public	interface	and	hiding	
the	implementa0on	details	

•  Encapsula0on	enables	changes	in	the	implementa0on	without	
affec0ng	users	of	a	class	

11/4/16

107

Summary: Variables and Methods
•  An	object’s	instance	variables	store	the	data	required	for	execu0ng	its	
methods	

•  Each	object	of	a	class	has	its	own	set	of	instance	variables	
•  An	instance	method	can	access	the	instance	variables	of	the	object	on	
which	it	acts	

•  A	private	instance	variable	should	only	be	accessed	by	the	methods	of	
its	own	class	

•  Class	variables	have	a	single	copy	of	the	variable	shared	among	all	of	
the	instances	of	the	class	

11/4/16

108

Summary: Method Headers, Data
•  Method	Headers	

•  You	can	use	method	headers	and	method	comments	to	specify	the	
public	interface	of	a	class	

•  A	mutator	method	changes	the	object	on	which	it	operates	
•  An	accessor	method	does	not	change	the	object	on	which	it	
operates	

•  Data	Representa0on	
•  For	each	accessor	method,	an	object	must	either	store	or	compute	
the	result	

•  Commonly,	there	is	more	than	one	way	of	represen0ng	the	data	of	
an	object,	and	you	must	make	a	choice	

•  Be	sure	that	your	data	representa0on	supports	method	calls	in	any	
order	

11/4/16

109

Summary: Constructors
•  A	constructor	ini0alizes	the	object’s	instance	variables		
•  A	constructor	is	invoked	when	an	object	is	created	

•  The	constructor	is	defined	using	the	special	method	name:	_	_init_	
_()	

•  Default	arguments	can	be	used	with	a	constructor	to	provide	different	
ways	of	crea0ng	an	object	

11/4/16

110

Summary: Method Implementation
•  The	object	on	which	a	method	is	applied	is	automa0cally	passed	to	the	
self	parameter	variable	of	the	method	

•  In	a	method,	you	access	instance	variables	through	the	self	
parameter	variable	

11/4/16

111

Summary: Testing Classes
•  A	unit	test	verifies	that	a	class	works	correctly	in	isola0on,	outside	a	
complete	program	

•  To	test	a	class,	use	an	environment	for	interac0ve	tes0ng,	or	write	a	
tester	class	to	execute	test	instruc0ons	

•  Determining	the	expected	result	in	advance	is	an	important	part	of	
tes0ng	

11/4/16

112

Summary: Object Tracing
•  Object	tracing	is	used	to	visualize	object	behavior	
•  Write	the	methods	on	the	front	of	a	card,	and	the	instance	variables	
on	the	back	

•  Update	the	values	of	the	instance	variables	when	a	mutator	method	is	
called	

11/4/16

113

Summary: Patterns for Classes
•  An	instance	variable	for	the	total	is	updated	in	methods	that	increase	
or	decrease	the	total	amount	

•  A	counter	that	counts	events	is	incremented	in	methods	that	
correspond	to	the	events	

•  An	object	can	collect	other	objects	in	a	list	

•  An	object	property	can	be	accessed	with	a	geFer	method	and	changed	
with	a	seFer	method	

•  If	your	object	can	have	one	of	several	states	that	affect	the	behavior,	
supply	an	instance	variable	for	the	current	state	

11/4/16

114

Summary: Patterns for Classes
•  To	model	a	moving	object,	you	need	to	store	and	update	its	posi0on	

11/4/16

115

Summary: Object References
•  An	object	reference	specifies	the	loca0on	of	an	object	
•  Mul0ple	object	variables	can	contain	references	to	the	same	object	

•  Use	the	is	and	is	not	operators	to	test	whether	two	variables	are	
aliases	

•  The	None	reference	refers	to	no	object	

11/4/16

116

Summary: Defining Special Methods
•  To	use	a	standard	operator	with	objects,	define	the	corresponding	
special	method	

•  Define	the	special	_	_repr_	_()	method	to	create	a	string	
representa0on	of	an	object	

11/4/16

