
Implementing AddChoice()	
•  The	method	will	receive	three	parameters	

•  As	usual	for	a	class	method	the	self	parameter	is	required	
•  The	text	for	the	choice	
•  A	Boolean	deno9ng	if	it	is	the	correct	choice	or	not	

•  It	appends	the	text	as	a	_choice,	sets	choice	number	to	the	_answer	and	calls	
the	inherited	setAnswer()	method:	

def	addChoice(self,	choice,	correct)	:	
				self._choices.append(choice)	
				if	correct	:	
								#	Convert	the	length	of	the	list	to	a	string.	
								choiceString	=	str(len(self._choices))	
								self.setAnswer(choiceString)	

11/9/16	 18	

Common Error 10.1 (1)
•  Confusing	Super-	and	Subclasses	
•  If	you	compare	an	object	of	type	ChoiceQuestion	with	an	object	of	type	
Question,	you	find	that:		
•  the	ChoiceQuestion	object	is	larger;	it	has	an	added	instance	variable,	
_choices,	

•  the	ChoiceQuestion	object	is	more	capable;	it	has	an	addChoice()	method.	
	

11/9/16	 19	

Common Error 10.1 (2)
•  So	why	is	ChoiceQuestion	called	the	subclass	and	Question	the	superclass?	

•  The	super/sub	terminology	comes	from	set	theory.		
•  Look	at	the	set	of	all	ques9ons.		
•  Not	all	of	them	are	ChoiceQuestion	objects;	some	of	them	are	other	kinds	of	
ques9ons.	

•  The	more	specialized	objects	in	the	subset	have	a	richer	state	and	more	
capabili9es.	

	

11/9/16	 20	

Self-Check

11/9/16	 21	

Self-Check
•  A	Road	class	simulates	a	road	on	which	
vehicles	travel.	Its	add	method	requires	
an	argument	of	type	Vehicle.	Rearrange	
the	lines	on	the	leU	to	add	appropriate	
objects	to	the	road.	You	can	add	them	in	
any	order.	Not	all	lines	are	useful.	

11/9/16	 22	

A.

B.

C.

D.

E.

F.

G.

10.3 Calling the Superclass Constructor (1)
•  A	subclass	constructor	can	only	define	the	instance	variables	of	the	subclass.		
•  But	the	superclass	instance	variables	also	need	to	be	defined.	

•  The	superclass	is	responsible	for	defining	its	own	instance	variables.		
•  Because	this	is	done	within	its	constructor,	the	constructor	of	the	subclass	must	
explicitly	call	the	superclass	constructor.	

11/9/16	 23	

10.3 Calling the Superclass Constructor (2)

!  To	dis9nguish	between	super-	and	sub-	class	constructor	use	the	
super()	func9on	in	place	of	the	self	reference	when	calling	the	
constructor:	

class	ChoiceQuestion(Question)	:	
				def	_	_init_	_(self)	:	
								super()._	_init_	_()	
								self._choices	=	[]	

11/9/16	 24	

•  The	superclass	constructor	should	be	called	before	the	subclass	
defines	its	own	instance	variables.	

10.3 Calling the Superclass Constructor (3)

•  If	a	superclass	constructor	requires	arguments,	you	must	provide	those	
arguments	to	the	_	_init_	_()	method.	

class	ChoiceQuestion(Question)	:	
				def	_	_init_	_(self,	questionText)	:	
								super()._	_init_	_(questionText)	
								self._choices	=	[]	

11/9/16	 25	

Syntax 10.2: Subclass Constructor

11/9/16	 26	

Example: Superclass Constructor (1)
•  Suppose	we	have	defined	a	Vehicle	class	and	the	constructor	which	
requires	an	argument:	

class	Vehicle	:	
				def	_	_init_	_(self,	numberOfTires)	:	
								self._numberOfTires	=	numberOfTires	
								.	.	.	

class	Car(Vehicle)	:	
				def	_	_init_	_(self)	:				#	1	

11/9/16	 27	

•  We	can	extend	the	Vehicle	class	by	defining	a	Car	subclass:	

Example: Superclass Constructor (2)
•  Now	as	the	subclass	is	defined,	the	parts	of	the	object	are	added	as	
a\ributes	to	the	object:	

								#	Call	the	superclass	constructor	to	define	its						
								#	instance	variable.	
								super()._	_init_	_(4)			#	2	
	
								#	This	instance	variable	is	added	by	the		
								#	subclass.	
								self._plateNumber	=	"??????"		#	3	

11/9/16	 28	

10.4 Overriding Methods
•  The	ChoiceQuestion	class	needs	a	display()	method	that	overrides	the	
display()	method	of	the	Question	class	

•  They	are	two	different	method	implementa9ons	
•  The	two	methods	named	display	are:	

•  Question	display()	
•  Displays	the	text	of	the	private	a\ribute	of	class	Ques9on	

•  ChoiceQuestion	display()	
•  Overrides	Question	display	method	
•  Displays	the	instance	variable	text	String	
•  Displays	the	list	of	choices	which	is	an	a\ribute	of	ChoiceQuestion	

11/9/16	 29	

Tasks Needed for Display():	1	
•  Display the question text.
•  Display the answer choices.

•  The	second	part	is	easy	because	the	answer	choices	are	an	instance	
variable	of	the	subclass.

class	ChoiceQuestion(Question)	:	
				.	.	.	
				def	display(self)	:	
								#	Display	the	question	text.	
								.	.	.	
								#	Display	the	answer	choices.	
								for	i	in	range(len(self._choices())	:	
												choiceNumber	=	i	+	1	
												print("%d:	%s"	%	(choiceNumber,		
															self._choices[i]))	

11/9/16	 30	

Tasks Needed for Display(): 2	
•  Display the question text.
•  Display the answer choices.

•  The	first	part	is	trickier!	
•  You	can’t	access	the	text	variable	of	the	superclass	directly	
because	it	is	private.	

•  Call	the	display()	method	of	the	superclass,	using	the	super()	
func9on:

def	display(self)	:	
#	Display	the	question	text.	
super().display()	#	OK	
#	Display	the	answer	choices.	

11/9/16	 31	

Tasks Needed for Display(): 3	
•  Display the question text.
•  Display the answer choices.

•  The	first	part	is	trickier!	(Con9nued)	
•  If	you	use	the	self	reference	instead	of	the	super()	func9on,	
then	the	method	will	not	work	as	intended.

def	display(self)	:	
				#	Display	the	question	text.	
				self.display()		
							#	Error—invokes	display()	of	ChoiceQuestion.	
.	.	.	

11/9/16	 32	

Questiondemo2.py (1)

Calls presentQuestion() - next
page

Creates two objects of the
ChoiceQuestion class, uses
new addChoice() method.

11/9/16	 33	

Questiondemo2.py (2)

Uses ChoiceQuestion
(subclass) display()
method.

11/9/16	 34	

Questions.py (1)

Inherits from Question class.

New addChoice()
method.

11/9/16	 35	

Questions.py (2)
Overridden display()
method.

11/9/16	 36	

Common Error 10.2 (1)

•  Here	self	refers	to	an	object	of	type	Manager	and	there	is	a	getSalary()	
method	in	the	Manager	class.	

class	Manager(Employee)	:	
				.	.	.	
				def	getSalary(self)	:	
								base	=	self.getSalary()		
											#	Error:	should	be	super().getSalary()	
								return	base	+	self._bonus	

11/9/16	 37	

•  Extending	the	func9onality	of	a	superclass	method	but	forgegng	to	call	the	
super()	method.		

•  For	example,	to	compute	the	salary	of	a	manager,	get	the	salary	of	the	underlying	
Employee	object	and	add	a	bonus:	

Common Error 10.2 (2)
•  Whenever	you	call	a	superclass	method	from	a	subclass	method	with	the	same	
name,	be	sure	to	use	the	super()	func9on	in	place	of	the	self	reference.	

class	Manager(Employee)	:	
				.	.	.	
				def	getSalary(self)	:	
								base	=	super().getSalary()	
								return	base	+	self._bonus	

11/9/16	 38	

10.5 Polymorphism
•  QuestionDemo2	passed	two	ChoiceQuestion	objects	to	the	
presentQuestion()	method	
•  Can	we	write	a	presentQuestion()	method	that	displays	both	Question	
and	ChoiceQuestion	types?	

•  With	inheritance,	this	goal	is	very	easy	to	realize!	
•  In	order	to	present	a	ques9on	to	the	user,	we	need	not	know	the	exact	type	of	
the	ques9on.		

•  We	just	display	the	ques9on	and	check	whether	the	user	supplied	the	correct	
answer.	

def	presentQuestion(q)	:	
				q.display()	
				response	=	input("Your	answer:	")	
				print(q.checkAnswer(response))	

11/9/16	 39	

Which Display() method was called?
•  presentQuestion()	simply	calls	the	display()	method	of	whatever	type	is	
passed:	

def	presentQuestion(q)	:	
		q.display()	
		.	.	.	
	

!  If	passed	an	object	of	the	Question	class:	
"  Question	display()	

!  If	passed	an	object	of	the	ChoiceQuestion	class:	
"  ChoiceQuestion	display()	

display()	

_
_

11/9/16	 40	

•  The	variable	q	does	not	know	the	type	of	object	to	which	it	refers:	

Why Does This Work?
•  As	discussed	in	Sec9on	10.1,	we	can	subs9tute	a	subclass	object	
whenever	a	superclass	object	is	expected:	

second	=	ChoiceQuestion()	
presentQuestion(second)			#	OK	to	pass	a	ChoiceQuestion	

11/9/16	 41	

•  Note	however	you	cannot	subs9tute	a	superclass	object	when	a	
subclass	object	is	expected.	
•  An	AttributeError	excep9on	will	be	raised.	
•  The	parent	class	has	fewer	capabili9es	than	the	child	class	(you	
cannot	invoke	a	method	on	an	object	that	has	not	been	defined	by	
that	object’s	class).	

Polymorphism Benefits
•  In	Python,	method	calls	are	always	determined	by	the	type	of	the	
actual	object,	not	the	type	of	the	variable	containing	the	object	
reference		
•  This	is	called	dynamic	method	lookup	
•  Dynamic	method	lookup	allows	us	to	treat	objects	of	different	
classes	in	a	uniform	way		

•  This	feature	is	called	polymorphism		

•  We	ask	mul9ple	objects	to	carry	out	a	task,	and	each	object	does	so	in	
its	own	way	

•  Polymorphism	makes	programs	easily	extensible	

11/9/16	 42	

Questiondemo3.py (1)

Creates an object of
the Question class

Creates an object of the ChoiceQuestion
class, uses new addChoice() method.

Calls presentQuestion()	- next
page - passed both types of objects.

11/9/16	 43	

Questiondemo3.py (2)

Receives a parameter of
the super-class type

Uses
appropriate
display
method.

11/9/16	 44	

Special Topic 10.2

	
•  will	return	True	if	q	is	an	instance	of	the	Question	class	or	of	any	

subclass	that	extends	the	Question	class,	
•  otherwise,	it	returns	False.	

isinstance(q,	Question)	

11/9/16	 45	

•  Subclasses	and	Instances:	
•  You	learned	that	the	isinstance()	func9on	can	be	used	to	
determine	if	an	object	is	an	instance	of	a	specific	class.		

•  But	the	isinstance()		func9on	can	also	be	used	to	determine	if	
an	object	is	an	instance	of	a	subclass.		

•  For	example,	the	func9on	call:	

Use of Isinstance()	
!  A	common	use	of	the	isinstance()		func9on	is	
to	verify	that	the	arguments	passed	to	a	func9on	
or	method	are	of	the	correct	type.	

def	presentQuestion(q)	:	
				if	not	isintance(q,	Question)	:	
								raise	TypeError("The	argument	is	not	a	Question	or		
											one	of	its	subclasses.")	

11/9/16	 46	

Special Topic 10.3
•  Dynamic	Method	Lookup		

•  Suppose	we	move	the	presentQuestion()	method	to	inside	the	
Question	class	and	call	it	as	follows:	

cq	=	ChoiceQuestion()	
cq.setText("In	which	country	was	the	inventor	of	Python	born?")	
.	.	.	
cq.presentQuestion()	

def	presentQuestion(self)	:	
		self.display()	
		response	=	input("Your answer: ")	
		print(self.checkAnswer(response))	
	

11/9/16	 47	

•  Which	display()	and	checkAnswer()	methods	will	be	called?	

Dynamic Method Lookup
•  If	you	look	at	the	code	of	the	presentQuestion()	method,	you	
can	see	that	these	methods	are	executed	on	the	self	reference	
parameter.	
•  Because	of	dynamic	method	lookup,	the	ChoiceQuestion	versions	of	the	
display()	and	checkAnswer()	methods	are	called	automa9cally.		

•  This	happens	even	though	the	presentQuestion()	method	is	declared	in	
the	Question	class,	which	has	no	knowledge	of	the	ChoiceQuestion	
class.	

class	Question	:	
			def	presentQuestion(self)	:	
							self.display()	
							response	=	input("Your	answer:	")	
							print(self.checkAnswer(response))	
			

11/9/16	 48	

Special Topic 10.4
•  Abstract	Classes	and	methods	

•  If	it	is	desirable	to	force	subclasses	to	override	a	method	
				of	a	base	class,	you	can	declare	a	method	as	abstract.	
•  You	cannot	instan9ate	an	object	that	has	abstract	methods	

•  Therefore	the	class	is	considered	abstract	(it	has	1+	abstract	methods)	

•  It’s	a	tool	to	force	programmers	to	create	subclasses	(avoids	the	trouble	of	coming	
up	with	useless	default	methods	that	others	might	inherit	by	accident).	

•  In	Python,	there	is	no	explicit	way	to	specify	that	a	method	is	an	abstract	
method.	Instead,	the	common	prac9ce	among	Python	programmers	is	to	
have	the	method	raise	a	NotImplementedError	excep9on	as	its	only	
statement:	

class	Account	:	
				.	.	.	
				def	deductFees(self)	:	
							raise	NotImplementedError	

11/9/16	 49	

Common Error 10.3
•  Don’t	Use	Type	Tests	

•  Some	programmers	use	specific	type	tests	in	order	to	implement	
behavior	that	varies	with	each	class:	

if	isinstance(q,	ChoiceQuestion)	:			#	Don’t	do	this.	
				#	Do	the	task	the	ChoiceQuestion	way.	
elif	isinstance(q,	Question)	:	
				#	Do	the	task	the	Question	way.	

elif	isinstance(q,	NumericQuestion)	:	
				#	Do	the	task	the	NumericQuestion	way.	

11/9/16	 50	

•  This	is	a	poor	strategy.		
•  If	a	new	class	such	as	NumericQuestion	is	added,	then	you	need	
to	revise	all	parts	of	your	program	that	make	a	type	test,	adding	
another	case:	

Alternate to Type Tests
•  Polymorphism	

•  Whenever	you	find	yourself	trying	to	use	type	tests	in	a	hierarchy	of	
classes,	reconsider	and	use	polymorphism	instead.		

•  Declare	a	method	doTheTask()	in	the	superclass,	override	it	in	the	
subclasses,	and	call	

q.doTheTask()	

11/9/16	 51	

Steps to Using Inheritance
•  As	an	example,	we	will	consider	a	bank	that	offers	customers	the	
following	account	types:	
1) A savings account that earns interest. The interest compounds monthly and is

based on the minimum monthly balance.
2) A checking account that has no interest, gives you three free withdrawals per

month, and charges a $1 transaction fee for each additional withdrawal.
•  The	program	will	manage	a	set	of	accounts	of	both	types	

•  It	should	be	structured	so	that	other	account	types	can	be	added	without	
affec9ng	the	main	processing	loop.		

•  The	menu:				D)eposit	W)ithdraw	M)onth	end	Q)uit	
•  For	deposits	and	withdrawals,	query	the	account	number	and	amount.	Print	the	
balance	of	the	account	aUer	each	transac9on.	

•  In	the	“Month	end”	command,	accumulate	interest	or	clear	the	transac9on	
counter,	depending	on	the	type	of	the	bank	account.	Then	print	the	balance	of	
all	accounts.	

11/9/16	 52	

Steps to Using Inheritance
1)	List	the	classes	that	are	part	of	the	hierarchy.	
			SavingsAccount	
			CheckingAccount	
	
2)	Organize	the	classes	into	an	inheritance.	
					hierarchy	
					Base	on	superclass	BankAccount	
	

	

11/9/16	 53	

3)	Determine	the	common	responsibili9es.	
			a.	Write	Pseudocode		for	each	task	
			b.	Find	common	tasks	
	

	

Using Inheritance: Pseudocode

11/9/16	 54	

Steps to Using Inheritance
4)	Decide	which	methods	are	overridden	in	subclasses.	

•  For	each	subclass	and	each	of	the	common	responsibili9es,	decide	whether	the	
behavior	can	be	inherited	or	whether	it	needs	to	be	overridden	

5)	Declare	the	public	interface	of	each	subclass.	
•  Typically,	subclasses	have	responsibili9es	other	than	those	of	the	superclass.	
List	those,	as	well	as	the	methods	that	need	to	be	overridden.		

•  You	also	need	to	specify	how	the	objects	of	the	subclasses	should	be	
constructed.	

6)	Iden9fy	instance	variables.	
•  List	the	instance	variables	for	each	class.	Place	instance	variables	that	are	
common	to	all	classes	in	the	base	of	the	hierarchy.	

7)	Implement	constructors	and	methods.	
8)	Construct	objects	of	different	subclasses	and	process	them.	

11/9/16	 55	

10.6 Application
•  Crea9ng	a	geometric	shape	class	hierarchy	

•  To	create	complex	scenes	beyond	the	simple	graphics	introduced	in	
Chapter	2,	you	may	need	a	large	number	of	shapes	that	vary	in	color,	
size,	or	loca9on.		

•  Rather	than	calling	the	various	methods	again	and	again,	it	would	be	
useful	to	have	classes	that	model	the	various	geometric	shapes.	

•  Using	shape	classes,	a	programmer	can	create	a	shape	object	with	
specific	characteris9cs,	then	use	the	same	object	to	draw	mul9ple	
instances	of	the	shape	with	only	minor	changes.	

11/9/16	 56	

Inheritance Diagram of Geometric Shapes

11/9/16	 57	

The Base Class
•  The	GeometricShape	class	should	provide	the	func9onality	that	is	
common	among	the	various	subclasses:		
•  Segng	the	colors	used	to	draw	the	shape.	
•  Gegng	and	segng	the	coordinates	for	the	upper-leU	corner	of	a	
bounding	box.	

•  Compu9ng	the	width	and	height	of	the	shape	(or	the	bounding	box	
used	to	define	the	shape).	

•  Drawing	the	shape	on	a	canvas.	

•  Due	to	the	amount	of	varia9on	between	shapes	all	subclasses	will	
have	to	override	the	draw()	method.	

11/9/16	 58	

