
10.5 Polymorphism
•  QuestionDemo2	passed	two	ChoiceQuestion	objects	to	the	
presentQuestion()	method	
•  Can	we	write	a	presentQuestion()	method	that	displays	both	Question	
and	ChoiceQuestion	types?	

•  With	inheritance,	this	goal	is	very	easy	to	realize!	
•  In	order	to	present	a	ques9on	to	the	user,	we	need	not	know	the	exact	type	of	
the	ques9on.		

•  We	just	display	the	ques9on	and	check	whether	the	user	supplied	the	correct	
answer.	

def	presentQuestion(q)	:	
				q.display()	
				response	=	input("Your	answer:	")	
				print(q.checkAnswer(response))	

11/11/16	 39	

Which Display() method was called?
•  presentQuestion()	simply	calls	the	display()	method	of	whatever	type	is	
passed:	

def	presentQuestion(q)	:	
		q.display()	
		.	.	.	
	

!  If	passed	an	object	of	the	Question	class:	
"  Question	display()	

!  If	passed	an	object	of	the	ChoiceQuestion	class:	
"  ChoiceQuestion	display()	

display()	

_
_

11/11/16	 40	

•  The	variable	q	does	not	know	the	type	of	object	to	which	it	refers:	

Why Does This Work?
•  As	discussed	in	Sec9on	10.1,	we	can	subs9tute	a	subclass	object	
whenever	a	superclass	object	is	expected:	

second	=	ChoiceQuestion()	
presentQuestion(second)			#	OK	to	pass	a	ChoiceQuestion	

11/11/16	 41	

•  Note	however	you	cannot	subs9tute	a	superclass	object	when	a	
subclass	object	is	expected.	
•  An	AttributeError	excep9on	will	be	raised.	
•  The	parent	class	has	fewer	capabili9es	than	the	child	class	(you	
cannot	invoke	a	method	on	an	object	that	has	not	been	defined	by	
that	object’s	class).	

Polymorphism Benefits
•  In	Python,	method	calls	are	always	determined	by	the	type	of	the	
actual	object,	not	the	type	of	the	variable	containing	the	object	
reference		
•  This	is	called	dynamic	method	lookup	
•  Dynamic	method	lookup	allows	us	to	treat	objects	of	different	
classes	in	a	uniform	way		

•  This	feature	is	called	polymorphism		

•  We	ask	mul9ple	objects	to	carry	out	a	task,	and	each	object	does	so	in	
its	own	way	

•  Polymorphism	makes	programs	easily	extensible	

11/11/16	 42	

Questiondemo3.py (1)

Creates an object of
the Question class

Creates an object of the ChoiceQuestion
class, uses new addChoice() method.

Calls presentQuestion()	- next
page - passed both types of objects.

11/11/16	 43	

Questiondemo3.py (2)

Receives a parameter of
the super-class type

Uses
appropriate
display
method.

11/11/16	 44	

Special Topic 10.2

	
•  will	return	True	if	q	is	an	instance	of	the	Question	class	or	of	any	

subclass	that	extends	the	Question	class,	
•  otherwise,	it	returns	False.	

isinstance(q,	Question)	

11/11/16	 45	

•  Subclasses	and	Instances:	
•  You	learned	that	the	isinstance()	func9on	can	be	used	to	
determine	if	an	object	is	an	instance	of	a	specific	class.		

•  But	the	isinstance()		func9on	can	also	be	used	to	determine	if	
an	object	is	an	instance	of	a	subclass.		

•  For	example,	the	func9on	call:	

Use of Isinstance()	
!  A	common	use	of	the	isinstance()		func9on	is	
to	verify	that	the	arguments	passed	to	a	func9on	
or	method	are	of	the	correct	type.	

def	presentQuestion(q)	:	
				if	not	isintance(q,	Question)	:	
								raise	TypeError("The	argument	is	not	a	Question	or		
											one	of	its	subclasses.")	

11/11/16	 46	

Special Topic 10.3
•  Dynamic	Method	Lookup		

•  Suppose	we	move	the	presentQuestion()	method	to	inside	the	
Question	class	and	call	it	as	follows:	

cq	=	ChoiceQuestion()	
cq.setText("In	which	country	was	the	inventor	of	Python	born?")	
.	.	.	
cq.presentQuestion()	

def	presentQuestion(self)	:	
		self.display()	
		response	=	input("Your answer: ")	
		print(self.checkAnswer(response))	
	

11/11/16	 47	

•  Which	display()	and	checkAnswer()	methods	will	be	called?	

Dynamic Method Lookup
•  If	you	look	at	the	code	of	the	presentQuestion()	method,	you	
can	see	that	these	methods	are	executed	on	the	self	reference	
parameter.	
•  Because	of	dynamic	method	lookup,	the	ChoiceQuestion	versions	of	the	
display()	and	checkAnswer()	methods	are	called	automa9cally.		

•  This	happens	even	though	the	presentQuestion()	method	is	declared	in	
the	Question	class,	which	has	no	knowledge	of	the	ChoiceQuestion	
class.	

class	Question	:	
			def	presentQuestion(self)	:	
							self.display()	
							response	=	input("Your	answer:	")	
							print(self.checkAnswer(response))	
			

11/11/16	 48	

Special Topic 10.4
•  Abstract	Classes	and	methods	

•  If	it	is	desirable	to	force	subclasses	to	override	a	method	
				of	a	base	class,	you	can	declare	a	method	as	abstract.	
•  You	cannot	instan9ate	an	object	that	has	abstract	methods	

•  Therefore	the	class	is	considered	abstract	(it	has	1+	abstract	methods)	

•  It’s	a	tool	to	force	programmers	to	create	subclasses	(avoids	the	trouble	of	coming	
up	with	useless	default	methods	that	others	might	inherit	by	accident).	

•  In	Python,	there	is	no	explicit	way	to	specify	that	a	method	is	an	abstract	
method.	Instead,	the	common	prac9ce	among	Python	programmers	is	to	
have	the	method	raise	a	NotImplementedError	excep9on	as	its	only	
statement:	

class	Account	:	
				.	.	.	
				def	deductFees(self)	:	
							raise	NotImplementedError	

11/11/16	 49	

Common Error 10.3
•  Don’t	Use	Type	Tests	

•  Some	programmers	use	specific	type	tests	in	order	to	implement	
behavior	that	varies	with	each	class:	

if	isinstance(q,	ChoiceQuestion)	:			#	Don’t	do	this.	
				#	Do	the	task	the	ChoiceQuestion	way.	
elif	isinstance(q,	Question)	:	
				#	Do	the	task	the	Question	way.	

elif	isinstance(q,	NumericQuestion)	:	
				#	Do	the	task	the	NumericQuestion	way.	

11/11/16	 50	

•  This	is	a	poor	strategy.		
•  If	a	new	class	such	as	NumericQuestion	is	added,	then	you	need	
to	revise	all	parts	of	your	program	that	make	a	type	test,	adding	
another	case:	

Alternate to Type Tests
•  Polymorphism	

•  Whenever	you	find	yourself	trying	to	use	type	tests	in	a	hierarchy	of	
classes,	reconsider	and	use	polymorphism	instead.		

•  Declare	a	method	doTheTask()	in	the	superclass,	override	it	in	the	
subclasses,	and	call	

q.doTheTask()	

11/11/16	 51	

Steps to Using Inheritance
•  As	an	example,	we	will	consider	a	bank	that	offers	customers	the	
following	account	types:	
1) A savings account that earns interest. The interest compounds monthly and is

based on the minimum monthly balance.
2) A checking account that has no interest, gives you three free withdrawals per

month, and charges a $1 transaction fee for each additional withdrawal.
•  The	program	will	manage	a	set	of	accounts	of	both	types	

•  It	should	be	structured	so	that	other	account	types	can	be	added	without	
affec9ng	the	main	processing	loop.		

•  The	menu:				D)eposit	W)ithdraw	M)onth	end	Q)uit	
•  For	deposits	and	withdrawals,	query	the	account	number	and	amount.	Print	the	
balance	of	the	account	a`er	each	transac9on.	

•  In	the	“Month	end”	command,	accumulate	interest	or	clear	the	transac9on	
counter,	depending	on	the	type	of	the	bank	account.	Then	print	the	balance	of	
all	accounts.	

11/11/16	 52	

Steps to Using Inheritance
1)	List	the	classes	that	are	part	of	the	hierarchy.	
			SavingsAccount	
			CheckingAccount	
	
2)	Organize	the	classes	into	an	inheritance.	
					hierarchy	
					Base	on	superclass	BankAccount	
	

	

11/11/16	 53	

3)	Determine	the	common	responsibili9es.	
			a.	Write	Pseudocode		for	each	task	
			b.	Find	common	tasks	
	

	

Using Inheritance: Pseudocode

11/11/16	 54	

Steps to Using Inheritance
4)	Decide	which	methods	are	overridden	in	subclasses.	

•  For	each	subclass	and	each	of	the	common	responsibili9es,	decide	whether	the	
behavior	can	be	inherited	or	whether	it	needs	to	be	overridden	

5)	Declare	the	public	interface	of	each	subclass.	
•  Typically,	subclasses	have	responsibili9es	other	than	those	of	the	superclass.	
List	those,	as	well	as	the	methods	that	need	to	be	overridden.		

•  You	also	need	to	specify	how	the	objects	of	the	subclasses	should	be	
constructed.	

6)	Iden9fy	instance	variables.	
•  List	the	instance	variables	for	each	class.	Place	instance	variables	that	are	
common	to	all	classes	in	the	base	of	the	hierarchy.	

7)	Implement	constructors	and	methods.	
8)	Construct	objects	of	different	subclasses	and	process	them.	

11/11/16	 55	

Eye Break

11/11/16	 56	

10.6 Application
•  Crea9ng	a	geometric	shape	class	hierarchy	

•  To	create	complex	scenes	beyond	the	simple	graphics	introduced	in	
Chapter	2,	you	may	need	a	large	number	of	shapes	that	vary	in	color,	
size,	or	loca9on.		

•  Rather	than	calling	the	various	methods	again	and	again,	it	would	be	
useful	to	have	classes	that	model	the	various	geometric	shapes.	

•  Using	shape	classes,	a	programmer	can	create	a	shape	object	with	
specific	characteris9cs,	then	use	the	same	object	to	draw	mul9ple	
instances	of	the	shape	with	only	minor	changes.	

11/11/16	 57	

Inheritance Diagram of Geometric Shapes

11/11/16	 58	

The Base Class
•  The	GeometricShape	class	should	provide	the	func9onality	that	is	
common	among	the	various	subclasses:		
•  Sedng	the	colors	used	to	draw	the	shape.	
•  Gedng	and	sedng	the	coordinates	for	the	upper-le`	corner	of	a	
bounding	box.	

•  Compu9ng	the	width	and	height	of	the	shape	(or	the	bounding	box	
used	to	define	the	shape).	

•  Drawing	the	shape	on	a	canvas.	

•  Due	to	the	amount	of	varia9on	between	shapes	all	subclasses	will	
have	to	override	the	draw()	method.	

11/11/16	 59	

Attributes of the Base Class
•  The	instance	variables	_fill	and	_outline	can	store	the	fill	and	
outline	colors	used	by	the	shapes.	

•  Coordinates	of	the	top	le`	hand	corner	of	the	bounding	box	for	the	
shape	can	be	stored	in	the	instance	variables	_x	and	_y	

11/11/16	 60	

Setting the Attributes
•  The	constructor	of	the	GeometricShape	base	class	needs	to	define	
the	common	instance	variables.		

class	GeometricShape	:	
				##	Construct	a	basic	geometric	shape.	
				#	@param	x	the	x-coordinate	of	the	shape	
				#	@param	y	the	y-coordinate	of	the	shape	
				def	_	_init_	_(self,	x,	y)	:	
								self._x	=	x	
								self._y	=	y	
								self._fill	=	None	
								self._outline	=	"black"	

11/11/16	 61	

Accessor Methods
•  As	expected	they	will	return	the	values	stored	in	the	instance	variables.	

def	getX(self)	:	
				return	self._x	
	
def	getY(self)	:	
				return	self._y	

def	getWidth(self)	:	
					return	0	
	
def	getHeight(self)	:	
					return	0	

11/11/16	 62	

•  Because	the	getWidth()	and	getHeight()	methods	return	zero	
they	should	be	overridden	by	subclasses.	

Mutator Methods
•  We	define	three	mutator	methods	for	sedng	the	colors.		

•  Two	methods	set	the	outline	or	fill	color	individually,	and	the	third	
method	sets	both	to	the	same	color:	

def	setFill(self,	color	=	None)	:	
				self._fill	=	color	
	
def	setOutline(self,	color	=	None)	:	
				self._outline	=	color	
	
def	setColor(self,	color)	:	
				self._fill	=	color	
				self._outline	=	color	

11/11/16	 63	

Other Methods
•  The	move()	method	moves	the	shape	by	a	given	amount	(x,	y)	
coordinates.	

def	moveBy(self,	dx,	dy)	:	
				self._x	=	self._x	+	dx	
				self._y	=	self._y	+	dy	

def	draw(self,	canvas)	:	
				canvas.setFill(self._fill)	
				canvas.setOutline(self._outline)	

11/11/16	 64	

•  As	indicated	earlier,	the	draw()	method	has	to	be	overridden	for	each	
subclass’s	specific	shape	but	the	common	opera9on	(sedng	the	
drawing	colors)	is	included	here.		

The Rectangle Class (1)
•  The	Rectangle	class	inherits	from	GeometricShape.		

•  The	constructor	passes	the	upper-le`	corner	to	the	superclass	and	
stores	the	width	and	height.	

def	_	_init_	_(self,	x,	y,	width,	height)	:	
				super()._	_init_	_(x,	y)	
				self._width	=	width	
				self._height	=	height	

11/11/16	 65	

The Rectangle Class (2)
•  The	draw	method	is	overridden	in	the	Rectangle	subclass	to	include	
the	call	to	the	appropriate	canvas	method.	

	

•  Accessors	are	overridden	(from	the	ones	that	return	zero).	

def	draw(self,	canvas)	:	
				super().draw(canvas)			#	Parent	method	sets	colors	
				canvas.drawRect(self.getX(),	self.getY(),	self._width,		
							self._height)	

def	getWidth(self)	:	
				return	self._width	
	
def	getHeight(self)	:	
				return	self._height	

11/11/16	 66	

The Line Class (1)
•  A	line	is	specified	by	its	start	and	end	points.	
	

11/11/16	 67	

•  It	is	possible	that	neither	of	these	points	is	the	upper-le`	corner	of	the	
bounding	box.		

•  Instead,	we	need	to	compute	the	smaller	of	the	x-	and	y-coordinates	
and	pass	those	values	to	the	superclass	constructor.		

The Line Class (2)
•  We	also	need	to	store	the	start	and	end	points	in	instance	variables	
because	we	need	them	to	draw	the	line.	

	

def	_	_init_	_(self,	x1,	y1,	x2,	y2)	:	
				super()._	_init_	_(min(x1,	x2),	min(y1,	y2))	
				self._startX	=	x1	
				self._startY	=	y1	
				self._endX	=	x2	
				self._endY	=	y2	

11/11/16	 68	

Line Class: Methods (1)
•  The	width	and	height	are	the	differences	between	the	star9ng	and	
ending	x-	and	y-coordinates.	

•  However,	if	the	line	isn’t	sloping	downward,	we	need	to	take	the	
absolute	values	of	the	difference.	

def	getWidth(self)	:	
				return	abs(self._endX	-	self._startX)	
	
def	getHeight(self)	:	
				return	abs(self._endY	-	self._startY)	

11/11/16	 69	

Line Class: Methods (2)
•  As	noted	the	draw()	method	must	be	overridden	
def	draw(self,	canvas)	:	
				super().draw(canvas)	
				canvas.drawLine(self._startX,	self._startY,	self._endX,		
							self._endY)	

def	moveBy(self,	dx,	dy)	:	
				super().moveBy(dx,	dy)	
				self._startX	=	self._startX	+	dx	
				self._startY	=	self._startY	+	dy	
				self._endX	=	self._endX	+	dx	
				self._endY	=	self._endY	+	dy	

11/11/16	 70	

•  Also	the	moveBy()	method	must	be	overridden	so	that	it	adjusts	the	
star9ng	and	ending	points,	in	addi9on	to	the	top-le`	corner.	

Wrapper Class: Square	
•  A	wrapper	class	wraps	or	encapsulates	the	func9onality	of	another	
class	to	provide	a	more	convenient	interface.		

•  For	example,	we	could	draw	a	square	using	the	Rectangle	subclass.		
•  But	it	requires	that	we	supply	both	the	width	and	height.	
•  Because	a	square	is	a	special	case	of	a	rectangle,	we	can	define	a	
Square	subclass	that	extends,	or	wraps,	the	Rectangle	class	and	only	
requires	one	value,	the	length	of	a	side.	

class	Square(Rectangle)	:	
				def	_	_init_	_(self,	x,	y,	size)	:	
								super()._	_init_	_(x,	y,	size,	size)	

11/11/16	 71	

Testshapes.py

11/11/16	 72	

Groups of Shapes
•  The	Group	subclass	does	not	actually	draw	a	geometric	shape.		

•  Instead	it	can	be	used	to	group	basic	geometric	shapes	to	create	a	complex	
shape.		
•  For	example,	suppose	you	construct	a	door	using	a	rectangle,	a	circle	for	the	
doorknob,	and	a	circle	for	the	peep	hole.		

•  The	three	components	can	be	stored	in	a	Group	in	which	the	individual	
shapes	are	defined	rela9ve	to	the	posi9on	of	the	group.		

•  This	allows	the	en9re	group	to	be	moved	to	a	different	posi9on	without	
having	to	move	each	individual	shape.	

11/11/16	 73	

The Group Class
•  To	create	a	Group,	you	provide	the	coordinates	of	the	upper-le`	
corner	of	its	bounding	box.		

•  The	class	defines	an	instance	variable	that	stores	the	shapes	in	a	list.	
•  As	new	shapes	are	added	to	a	Group	object,	the	width	and	height	of	
the	bounding	box	expands	to	enclose	the	new	shapes.	

11/11/16	 74	

Group Class Methods (1)
•  Create	the	group	with	its	bounding	box	posi9oned	at	(x,	y).	

def	_	_init_	_(self,	x	=	0,	y	=	0)	:	
				super()._	_init_	_(x,	y)	
				self._shapeList	=	[]	

def	add(self,	shape)	:	
				self._shapeList.append(shape)	

11/11/16	 75	

•  Adding	a	shape	to	the	group	involves	several	steps.		
•  First,	the	shape	has	to	be	appended	to	the	list:	

Group Class Methods (2)
•  The	individual	shapes	are	posi9oned	rela9ve	to	the	upper-le`	corner	
of	the	group’s	bounding	box.		

•  We	must	ensure	that	each	shape	is	posi9oned	below	and	to	the	
right	of	this	point.		If	it	is	not,	it	must	be	moved.	

#	Keep	the	shape	within	top	and	left	edges	of	the		
#	bounding	box.	
if	shape.getX()	<	0	:	
				shape.moveBy(-shape.getX(),	0)	
if	shape.getY()	<	0	:	
				shape.moveBy(0,	-shape.getY())	

11/11/16	 76	

Group Class Methods (3)
•  The	width	of	the	group	is	determined	by	the	rightmost	extent	of	any	
of	the	group’s	members.		

•  The	rightmost	extent	of	a	shape	is	shape.getX()	+	
shape.getWidth().	The	following	method	computes	the	
maximum	of	these	extents.	

def	getWidth(self)	:	
				width	=	0	
				for	shape	in	self._shapeList	:	
								width	=	max(width,	shape.getX()	+		
											shape.getWidth())	
				return	width	

11/11/16	 77	

Group Class Methods (4)
•  The	height	of	the	group	(the	bohommost	extent)	is	computed	in	the	
same	way	as	the	width.	

def	getHeight(self)	:	
				height	=	0	
				for	shape	in	self._shapeList	:	
								height	=	max(height,	shape.getY()	+		
											shape.getHeight())	
				return	height	

11/11/16	 78	

Group Class Methods (5)
•  The	en9re	group	can	be	drawn	on	the	canvas.	
•  The	shapes	contained	in	the	group	are	defined	rela9ve	to	the	upper-
le`	corner	of	its	bounding	box.		

•  Before	a	shape	can	be	drawn,	it	has	to	be	moved	to	its	posi9on	rela9ve	
to	the	upper-le`	corner	of	the	group’s	bounding	box.	

def	draw(self,	canvas)	:	
				for	shape	in	self._shapeList	:	
								shape.moveBy(self.getX(),	self.getY())	
								shape.draw(canvas)	
								shape.moveBy(-self.getX(),	-self.getY())	

11/11/16	 79	

Summary: Inheritance
•  A	subclass	inherits	data	and	behavior	from	a	superclass.	
•  You	can	always	use	a	subclass	object	in	place	of	a	superclass	object.	
•  A	subclass	inherits	all	methods	that	it	does	not	override.	
•  A	subclass	can	override	a	superclass	method	by	providing	a	new	
implementa9on.	

•  In	Python	a	class	name	inside	parentheses	in	the	class	header	indicates	that	a	
class	inherits	from	a	superclass.	

11/11/16	 80	

Summary: Overriding Methods

•  An	overriding	method	can	extend	or	replace	the	func9onality	
of	the	superclass	method.	

•  Use	the	reserved	word	super	to	call	a	superclass	method.	
•  To	call	a	superclass	constructor,	use	the	super	reserved	word	
before	the	subclass	defines	its	own	instance	variables.	

•  The	constructor	of	a	subclass	can	pass	arguments	to	a	
superclass	constructor,	using	the	reserved	word	super.	

11/11/16	 81	

Summary: Polymorphism
•  A	subclass	reference	can	be	used	when	a	superclass	reference	is	expected.	
•  Polymorphism	(“having	mul9ple	shapes”)	allows	us	to	manipulate	objects	that	
share	a	set	of	tasks,	even	though	the	tasks	are	executed	in	different	ways.	

•  An	abstract	method	is	a	method	whose	implementa9on	is	not	specified.	

11/11/16	 82	

Summary: Use Inheritance for Designing a
Hierarchy of Shapes

•  The	GeometricShape	class	provides	methods	that	are	common	to	all	
shapes.	

•  •Each	subclass	of	GeometricShape	must	override	the	draw()	
method.	

•  A	shape	class	constructor	must	ini9alize	the	coordinates	of	its	upper-
le`	corner.	

•  Each	shape	subclass	must	override	the	methods	for	compu9ng	the	
width	and	height.	

•  A	Group	contains	shapes	that	are	drawn	and	moved	together.	

11/11/16	 83	

