
11/16/16 Page 22

11/16/16 Page 23

11/16/16 Page 24

Recursive Helper functions
•  Some%mes	it	is	easier	to	find	a	recursive	solu%on	if	you	make	a	slight	
change	to	the	original	problem.		

•  Consider	the	palindrome	test	of	previous	sec%on.	

•  It	is	a	bit	inefficient	to	construct	new	string	objects	in	every	step.	

	

	

	

11/16/16 Page 25

Substring Palindromes (1)
•  Rather	than	tes%ng	whether	the	sentence	is	a	palindrome,	check	
whether	a	substring	is	a	palindrome:		
	

	

	

	

	

11/16/16 Page 26

##	Recursively	tests	whether	a	substring	is	
#	a	palindrome.	
#	@param	text	a	string	that	is	being	checked	
#	@param	start	the	index	of	the	first	character	of	the	substring	
#	@param	end	the	index	of	the	last	character	of	the	substring	
#	@return	True	if	the	substring	is	a	palindrome	
#	
def	substringIsPalindrome(text,	start,	end)	:	

Substring Palindromes (2)
•  Then,	simply	call	the	helper	func%on	with	posi%ons	that	test	the	en%re	
string:		
	

	

	

	

11/16/16 Page 27

def	isPalindrome(text)	:	
				return	substringIsPalindrome(text,	0,	len(text)	–	1)	

Recursive Helper function

11/16/16 Page 28

Continued

def	substringIsPalindrome(text,	start,	end)	:	
				#	Separate	case	for	substrings	of	length	0	and	1.	
				if	start	>=	end	:	
								return	True	
				else	:	
				#	Get	first	and	last	characters,	converted	to	lowercase.	
								first	=	text[start].lower()	
								last	=	text[end].lower()	
					

Recursive Helper Function

11/16/16 Page 29

				if	first.isalpha()	and	last.isalpha()	:	
								if	first	==	last	:	
												#	Test	substring	that	doesn’t	contain	the	matching		
												#	letters.	
												return	substringIsPalindrome	
															(text,	start	+	1,	end	-	1)	
								else	:	
												return	False	
				elif	not	last.isalpha()	:	
								#	Test	substring	that	doesn’t	contain	the	last	character.	
								return	substringIsPalindrome(text,	start,	end	-	1)	
				else	:	
								#	Test	substring	that	doesn’t	contain	the	first		
								#	character.		
								return	substringIsPalindrome(text,	start	+	1,	end)	

11.4 The Efficiency of Recursion
•  	Fibonacci	sequence:		
	Sequence	of	numbers	defined	by	

 f1 = 1
f2 = 1
fn = fn-1 + fn-2

•  	First	ten	terms:	

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

	

	

	

Page 30 11/16/16

Recursivefib.py

Page 31 11/16/16

Efficiency of Recursion
•  	Recursive	implementa%on	of	fib()	is			
	straighForward.		

•  	Watch	the	output	closely	as	you	run	the	test	
	program.		

•  	First	few	calls	to	fib()	are	quite	fast.		

•  	For	larger	values,	the	program	pauses	an	
	amazingly	long	%me	between	outputs.		

•  	To	find	out	the	problem,	let’s	insert	trace	
	messages.	

11/16/16 Page 32

Recursivefibtracer.py: 1

Page 33 11/16/16

Recursivefibtracer.py: 2

Page 34 11/16/16

Call Pattern of Recursive Fib()
Function

11/16/16 Page 35

Efficiency of Recursion
•  The	func%on	takes	so	long	because	it	computes	the	same	values	over	

and	over.		

•  Computa%on	of	fib(6)	calls	fib(3)	three	%mes.	

•  Imitate	the	pencil-and-paper	process	to	avoid		
compu%ng	the	values	more	than	once.	

11/16/16 Page 36

Efficiency of Recursion
•  	Occasionally,	a	recursive	solu%on	runs	much	
	slower	than	its	itera%ve	counterpart.		

•  	In	most	cases,	the	recursive	solu%on	is	only	
	slightly	slower.		

•  	The	itera%ve	isPalindrome()	performs	only	
	slightly	beLer	than	recursive	solu%on.	

•  Each	recursive	func.on	call	takes	a	certain	amount	of	processor	.me		

11/16/16 Page 37

Loopfib.py	(1)	

Page 38 11/16/16

Loopfib.py	(2)	

Page 39 11/16/16

Efficiency of Recursion
•  Smart	compilers	can	avoid	recursive	func%on	calls	if	they	follow	simple	
paLerns.		

•  Most	compilers	don’t	do	that			

•  In	many	cases,	a	recursive	solu%on	is	easier	to	understand	and	
implement	correctly	than	an	itera%ve	solu%on	.	

•  	‘To	iterate	is	human,	to	recurse	divine.’		
	-	L.	Peter	Deutsch		

Page 40 11/16/16

Iterative IsPalindrome()	Function

Page 41

def	isPalindrome(text)	:	
				start	=	0	
				end	=	len(text)	-	1	
				while	start	<	end	:	
								first	=	text[start].lower()	
								last	=	text[end].lower()	
								if	first.isalpha()	and	last.isalpha()	:	
												#	Both	are	letters.	
												if	first	==	last	:	
																start	=	start	+	1	
																end	=	end	-	1	
												else	:	
																return	False	
								if	not	last.isalpha()		
												end	=	end	-	1	

11/16/16

11.5 Permutations
•  Design	a	class	that	will	list	all	permuta%ons	of	string,	where	a	
permuta%on	is	a	rearrangement	of	the	leLers		

•  The	string	"eat"	has	six	permuta%ons:	
•  "eat"	
•  "eta"		
•  "aet"	
•  "ate"	
•  "tea"	
•  "tae"	

11/16/16 Page 42

Generate All Permutations (1)
•  	Generate	all	permuta%ons	that	start	with	'e',	then	'a',	then	't'		

•  	The	string	"eat"	has	six	permuta%ons:	
•  "eat"	
•  "eta"		
•  "aet"	
•  "ate"	
•  "tea"	
•  "tae"	

11/16/16 Page 43

Generate All Permutations (2)
•  Generate	all	permuta%ons	that	start	with	'e',	then	'a',	then	't'

•  To	generate	permuta%ons	star%ng	with	'e',	we	need	to	find	all	
permuta%ons	of	"at"

•  This	is	the	same	problem	with	simpler	inputs		

•  Use	recursion		

11/16/16 Page 44

Implementing Permutations() Function

•  	Loop	through	all	posi%ons	in	the	word	to	be		
	permuted

•  	For	each	of	them,	compute	the	shorter	word		
	obtained	by	removing	the	ith	leLer:	
	

11/16/16 Page 45

shorter	=	word[:	i]	+	word[i	+	1	:]	

shorterPermutations	=	permutations(shorter)	

•  Compute	the	permuta%ons	of	the	shorter	word:	
	

Implementing Permutations()
Function
•  	Add	the	removed	leLer	to	the	front	of	all		
	permuta%ons	of	the	shorter	word:	

	

11/16/16 Page 46

for	s	in	shorterPermutations	:	
				result.append(word[i]	+	s)	

•  Special	case	for	the	simplest	string,	the	empty	
string,	which	has	a	single	permuta%on	-	itself	

	

Permutations.py (1)

Page 47 11/16/16

Permutations.py (2)

Page 48 11/16/16

Backtracking
•  Backtracking	examines	par%al	solu%ons,	abandoning	unsuitable	ones	
and	returning	to	consider	other	candidates	

•  Can	be	used	to	
•  solve	crossword	puzzles	

•  escape	from	mazes	

•  find	solu%ons	to	systems	that	are	constrained	by	rules	

11/16/16 Page 49

Backtracking Characteristic
Properties
1.  A	procedure	to	examine	a	par%al	solu%on	and	determine	whether	

to:	

I.  accept	it	as	an	actual	solu%on	or,	

II.  abandon	it	(because	it	either	violates	some	rules	or	can	never	lead	
to	a	valid	solu%on)	

2.  A	procedure	to	extend	a	par%al	solu%on,	genera%ng	one	or	more	
solu%ons	that	come	closer	to	the	goal	

11/16/16 Page 50

Recursive Backtracking
Algorithm
Solve(partialSolution)	

					Examine(partialSolution).	

					If	accepted	

										Add	partialSolution	to	the	list	of	solutions.	

					Else	if	not	abandoned	

										For	each	p	in	extend(partialSolution)	

														Solve(p)	

11/16/16 Page 51

Eight Queens Problem
•  	Problem:	posi%on	eight	queens	on	a	chess	board	so	that		
	none	of	them	aLacks	another	according	to	the	rules	of		
	chess	

•  	A	solu%on:	

11/16/16 Page 52

