Call Pattern of Recursive Fib() Function

11/18/16

Efficiency of Recursion

- The function takes so long because it computes the same values over and over.
- Computation of fib(6) calls fib(3) three times.
- Imitate the pencil-and-paper process to avoid computing the values more than once.

Efficiency of Recursion

- Occasionally, a recursive solution runs much slower than its iterative counterpart.
- In most cases, the recursive solution is only slightly slower.
- The iterative isPalindrome() performs only slightly better than recursive solution.
 - Each recursive function call takes a certain amount of processor time

Loopfib.py (1)

```
##
 1
       This program computes Fibonacci numbers using an iterative function.
2
    #
 3
    #
4
 5
    def main() :
6
       n = int(input("Enter n: "))
 7
       for i in range(1, n + 1):
8
           f = fib(i)
9
           print("fib(%d) = %d" % (i, f))
10
```

Loopfib.py (2)

11	## Computes a Fibonacci number.
12	# @param n an integer
13	# @return the nth Fibonacci number
14	#
15	<pre>def fib(n) :</pre>
16	if n <= 2 :
17	return 1
18	else :
19	olderValue = 1
20	oldValue = 1
21	newValue = 1
22	for i in range(3, $n + 1$) :
23	newValue = oldValue + olderValue
24	olderValue = oldValue
25	oldValue = newValue
26	
27	return newValue
28	
29	# Start the program.
30	main()
	11/18/16

Program Run

```
Enter n: 50
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
fib(5) = 5
fib(5) = 5
fib(6) = 8
fib(7) = 13
...
fib(50) = 12586269025
```

Memoized Fibonacci

```
##
# This program computes Fibonacci numbers using a recursive function.
#
def main():
    n = int(input("Enter n: "))
    for i in range(1, n + 1):
        f = fib(i, {})
        print("fib(%d) = %d" % (i, f))
## Computes a Fibonacci number.
# @param n an integer
# @return the nth Fibonacci number
#
def fib(n,memoize):
    if n <= 2 :</pre>
```

memoize[n] = 1

else :

Efficiency of Recursion

- Smart compilers can avoid recursive function calls if they follow simple patterns.
- Most compilers don't do that
- In many cases, a recursive solution is easier to understand and implement correctly than an iterative solution .
- *'To iterate is human, to recurse divine.'* L. Peter Deutsch

Iterative IsPalindrome() Function

```
def isPalindrome(text) :
    start = 0
    end = len(text) - 1
    while start < end :
        first = text[start].lower()
        last = text[end].lower()
        if first.isalpha() and last.isalpha() :
            # Both are letters.
            if first == last :
                start = start + 1
                end = end - 1
            else :
                return False
        if not last.isalpha()
            end = end - 1
```

11/18/16

11.5 Permutations

- Design a class that will list all permutations of string, where a permutation is a rearrangement of the letters
- The string "eat" has six permutations:
 - "eat"
 - "eta"
 - "aet"
 - "ate"
 - "tea"
 - "tae"

Generate All Permutations (1)

- Generate all permutations that start with 'e', then 'a', then 't'
- The string "eat" has six permutations:
 - "eat"
 - "eta"
 - "aet"
 - "ate"
 - "tea"
 - "tae"

Generate All Permutations (2)

- Generate all permutations that start with 'e', then 'a', then 't'
- To generate permutations starting with 'e', we need to find all permutations of "at"
- This is the same problem with simpler inputs
- Use recursion

Implementing Permutations() Function

- Loop through all positions in the word to be permuted
- For each of them, compute the shorter word obtained by removing the ith letter:

shorter = word[: i] + word[i + 1 :]

• Compute the permutations of the shorter word:

shorterPermutations = permutations(shorter)

Implementing Permutations() Function

• Add the removed letter to the front of all permutations of the shorter word:

for s in shorterPermutations :
 result.append(word[i] + s)

• Special case for the simplest string, the empty string, which has a single permutation - itself

Permutations.py (1)

1 ## # This program computes permutations of a string. 2 3

4 5 def main() : 6 for string in permutations("eat") : print(string) 7 8

36 37 # Start the program. **38** main()

Permutations.py (2)

Backtracking

- Backtracking examines partial solutions, abandoning unsuitable ones and returning to consider other candidates
- Can be used to
 - solve crossword puzzles
 - escape from mazes
 - find solutions to systems that are constrained by rules

Backtracking Characteristic Properties

- 1. A procedure to examine a partial solution and determine whether to:
 - . accept it as an actual solution or,
 - abandon it (because it either violates some rules or can never lead to a valid solution)
- 2. A procedure to extend a partial solution, generating one or more solutions that come closer to the goal

Recursive Backtracking Algorithm

Solve(partialSolution)

Examine(partialSolution).

If accepted

Add partialSolution to the list of solutions.

Else if not abandoned

For each p in extend(partialSolution)
 Solve(p)

Eight Queens Problem

- **Problem:** position eight queens on a chess board so that none of them attacks another according to the rules of chess
- A solution:

11/18/16

Eight Queens Problem

- Easy to examine a partial solution:
 - If two queens attack one another, reject it
 - Otherwise, if it has eight queens, accept it
 - Otherwise, continue
- Easy to extend a partial solution:
 - Add another queen on an empty square
- Systematic extensions:
 - Place first queen on row 1
 - Place the next on row 2
 - Etc.

Function: Examine()

```
def examine(partialSolution) :
    for i in range(0, len(partialSolution)) :
        for j in range(i + 1, len(partialSolution)) :
            if attacks(partialSolution[i],
                partialSolution[j]) :
                return ABANDON
    if len(partialSolution) == NQUEENS :
        return ACCEPT
    else :
        return CONTINUE
```

Function: Extend()

```
def extend(partialSolution) :
    results = []
    row = len(partialSolution) + 1
    for column in "abcdefgh" :
        newSolution = list(partialSolution)
        newSolution.append(column + str(row))
        results.append(newSolution)
    return results
```

Diagonal Attack

- To determine whether two queens attack each other diagonally:
 - Check whether slope is ±1

 $(row_2 - row_1)/(column_2 - column_1) = \pm 1$ $row_2 - row_1 = \pm (column_2 - column_1)$ $row_2 - row_1| = |column_2 - column_1|$

Backtracking in the Four Queens Problem (1)

11/18/16

Page 58

Backtracking in the Four Queens Problem (2)

- Starting with a blank board, four partial solutions with a queen in row 1
- When the queen is in column 1, four partial solutions with a queen in row 2
 - Two are abandoned immediately
 - Other two lead to partial solutions with three queens 3 and 3, all but one of which are abandoned
- One partial solution is extended to four queens, but all of those are abandoned as well

Queens.py

```
def main() :
 5
 6
       solve([])
 7
 8
    COLUMNS = "abcdefgh"
 9
    NQUEENS = len(COLUMNS)
    ACCEPT = 1
10
11
    CONTINUE = 2
12 ABANDON = 3
18
    def solve(partialSolution) :
19
       exam = examine(partialSolution)
20
       if exam == ACCEPT :
21
           print(partialSolution)
22
       elif exam != ABANDON :
23
          for p in extend(partialSolution) :
24
```

```
solve(p)
```

- # Start the program. 69
- 70 main()

Queens.py

```
31
    def examine(partialSolution) :
32
        for i in range(0, len(partialSolution)) :
33
           for j in range(i + 1, len(partialSolution)) :
34
              if attacks(partialSolution[i], partialSolution[j]) :
35
                 return ABANDON
36
        if len(partialSolution) == NQUEENS :
37
           return ACCEPT
                                   60
                                       def extend(partialSolution) :
38
        else :
                                   61
                                           results = []
39
           return CONTINUE
                                   62
                                           row = len(partialSolution) + 1
                                   63
                                           for column in COLUMNS :
                                   64
                                              newSolution = list(partialSolution)
                                   65
                                              newSolution.append(column + str(row))
                                   66
                                              results.append(newSolution)
                                   67
                                           return results
47
     def attacks(p1, p2) :
48
        column1 = COLUMNS.index(p1[0]) + 1
49
        row1 = int(p1[1])
        column2 = COLUMNS.index(p2[0]) + 1
50
51
        row2 = int(p2[1])
52
        return (row1 == row2 or column1 == column2 or
53
           abs(row1 - row2) == abs(column1 - column2))
        11/18/16
                                                                       Page 61
```

Queens.py

Program Run

['a1', 'e2', 'h3', 'f4', 'c5', 'g6', 'b7', 'd8'] ['a1', 'f2', 'h3', 'c4', 'g5', 'd6', 'b7', 'e8'] ['a1', 'g2', 'd3', 'f4', 'h5', 'b6', 'e7', 'c8'] . . . ['f1', 'a2', 'e3', 'b4', 'h5', 'c6', 'g7', 'd8'] . . . ['h1', 'c2', 'a3', 'f4', 'b5', 'e6', 'g7', 'd8'] ['h1', 'd2', 'a3', 'c4', 'f5', 'b6', 'g7', 'e8']' (92 solutions)

11.7 Mutual Recursion

• **Problem:** Compute the value of arithmetic expressions such as:

3 + 4 * 5 (3 + 4) * 5 1 - (2 - (3 - (4 - 5)))

- Computing the expression is complicated
 - * and / bind more strongly than + and -
 - Parentheses can be used to group sub-expressions

Syntax Diagrams for Evaluating an Expression

11/18/16

Mutual Recursion

- An *expression* can be broken down into a sequence of terms, separated by + or –
- Each *term* is broken down into a sequence of factors, separated by * or /
- Each *factor* is either a parenthesized expression or a number
- The syntax trees represent which operations should be carried out first

Syntax Trees for Two Expressions

11/18/16

Mutual Recursion

- In a mutual recursion, a set of cooperating functions calls each other repeatedly
- To compute the value of an expression, implement 3 functions that call each other recursively:
 - expression()
 - term()
 - factor()

Function: Expression()

```
def expression(tokens) :
    value = term(tokens)
    done = False
    while not done and len(tokens) > 0 :
        next = tokens[0]
        if next == "+" or next == "-" :
            tokens.pop(0) # Discard "+" or "-"
            value2 = term(tokens)
            if next == "+" :
                value = value + value2
            else :
               value = value - value2
        else :
            done = True
return value
```

11/18/16

Function: Term()

• The term() function calls factor() in the same way, multiplying or dividing the factor values

```
def term(tokens) :
    value = factor(tokens)
    done = False
    while not done and len(tokens) > 0:
        next = tokens[0]
        if next == "*" or next == "/" :
            tokens.pop(0)
            value2 = factor(tokens)
            if next == "*" :
                value = value * value2
            else :
                value = value / value2
       else :
           done = True
```

return value

11/18/16

Function: Factor()

```
def factor(tokens) :
    next = tokens.pop(0)
    if next == "(" :
        value = expression(tokens)
        tokens.pop(0)  # Discard ")"
    else :
        value = next
    return value
```

Trace (3 + 4) * 5

To see the mutual recursion clearly, trace through the expression (3+4)*5:

- expression() calls term()
 - term() calls factor()
 - factor() consumes the (input
 - factor() calls expression()
 - expression() returns eventually with the value of 7, having consumed 3 + 4. This is the recursive call.
 - factor() consumes the) input
 - factor() returns 7
 - term() consumes the inputs * and 5 and returns 35
- expression() returns 35

Evaluator.py (1)

```
def main() :
5
6
        expr = input("Enter an expression: ")
        tokens = tokenize(expr)
7
8
        value = expression(tokens)
9
        print(expr + "=" + str(value))
15
    def tokenize(inputLine) :
16
        result = []
17
       i = 0
18
       while i < len(inputLine) :</pre>
19
           if inputLine[i].isdigit() :
20
              i = i + 1
21
              while j < len(inputLine) and inputLine[j].isdigit() :</pre>
22
                 i = i + 1
23
              result.append(int(inputLine[i : j]))
24
              i = i
25
          else :
26
              result.append(inputLine[i])
27
              i = i + 1
28
        return result
```

Evaluator.py

```
def expression(tokens) :
34
35
        value = term(tokens)
36
        done = False
37
       while not done and len(tokens) > 0 :
38
          next = tokens[0]
39
           if next == "+" or next == "-" :
              tokens.pop(0) # Discard "+" or "-"
40
41
             value2 = term(tokens)
42
             if next == "+" :
43
                 value = value + value2
44
              else :
45
                value = value - value2
46
          else :
47
              done = True
48
49
        return value
```

Evaluator.py

```
55
    def term(tokens) :
56
       value = factor(tokens)
57
       done = False
58
       while not done and len(tokens) > 0:
59
          next = tokens[0]
60
          if next == "*" or next == "/" :
61
             tokens.pop(0)
62
             value2 = factor(tokens)
63
             if next == "*" :
64
                value = value * value2
65
             else :
66
                value = value / value2
67
          else :
68
             done = True
69
70
       return value
```

Evaluator.py

```
76
    def factor(tokens) :
77
       next = tokens.pop(0)
78
       if next == "(" :
          value = expression(tokens)
79
80
          tokens.pop(0) # Discard ")"
81
       else :
82
          value = next
83
84
       return value
85
86
   # Start the program.
87
    main()
```

Program Run

```
Enter an expression: 3+4*5
3+4*5=23
```

- Understand the control flow in a recursive computation.
 - A recursive computation solves a problem by using the solution to the same problem with simpler inputs.
 - For a recursion to terminate, there must be special cases for the simplest values.
- Design a recursive solution to a problem.

- Identify recursive helper functions for solving a problem.
 - Sometimes it is easier to find a recursive solution if you make a slight change to the original problem.
- Contrast the efficiency of recursive and non-recursive algorithms.
 - Occasionally, a recursive solution runs much slower than its iterative counterpart. However, in most cases, the recursive solution is only slightly slower.
 - In many cases, a recursive solution is easier to understand and implement correctly than an iterative solution.

- Review a complex recursion example that cannot be solved with a simple loop.
 - The permutations of a string can be obtained more naturally through recursion than with a loop.
- Use backtracking to solve problems that require trying out multiple paths.
 - Backtracking examines partial solutions, abandoning unsuitable ones and returning to consider other candidates.

- Recognize the phenomenon of mutual recursion in an expression evaluator.
 - In a mutual recursion, cooperating functions or methods call each other repeatedly.