
WRITING A PROGRAM
CS 130

Creative Software Architectures
for Collaborative Projects

Prof. Donald J. Patterson
Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal

Jones and Bartlett Learning

• Introduction

• Interaction Design

• Decisions

• Requirements

• Design Constraints

• Design Decisions

• Testing

• Implementation

Overview

• Introduction

• Interaction Design

• Decisions

• Requirements

• Design Constraints

• Design Decisions

• Testing

• Implementation

Overview

Writing a program
• Creating software is a team effort

• Teams require governance

• Leadership

• Processes

• Standards

• Institutional Artifacts that transcend an individual

Introduction

Team sizes
• Individuals

• Personal projects, school projects, learning

• Pizza sized teams

• Federated teams

• Boeing

• Microsoft

• Google

Introduction

Software Teams
• Software requires understanding abstract arrangements of

information

• This requires communication - lots of it

• As teams grow the interconnections grow

Introduction

(n)(n� 1)

2
Table 1

of people # of links

0 0

2 1

4 6

8 28

16 120

32 496

64 2016

Software Teams
• Pizza-sized teams limit communication links

• Larger teams require hierarchy to manage complexity

• This can slow down architecture

• Architecture becomes influenced by communication

structure

Introduction

6 nodes7 nodes hierarchical

Class Project Intro

http://foodbanksbc.org/our-impact/

We all “start” by learning how to code in some
programming language.

• With a small, hypothetical, and fairly well defined problem

• Usually the code is within one module

Introduction

We then learn that the program usually does not
work on the first try, second try ------ may be

even 5th or 6th try!

• We learn about “testing” the program

• We learn about re-reading and re-thinking the (problem)

requirements more carefully --- then find that we may not

have all the answers

• We learn about tracing and “debugging” the program

• Then ---- somehow magically ---- we decide that it’s “good

enough !”

Introduction

M
ay

be
 n

ot
 in

 th
is

 o
rd

er

1. Understand the problem

• Contextual Inquiry

• Study the environment in which the intervention will be

deployed

• Requirements Engineering

• Work with the client to figure out

• Functionalities

• Non-functionalities

• performance, security, modifiability, marketability, etc

“Simple” Set of Steps

2. Perform Some Design

• Organizing the functionalities in some sequence;

• possibly using some diagrams

• Focus on input/output (data, formats, organization)

• Think about some constraints (non-functionalities) such as

speed, UI looks, programming language, dependencies, etc.

• any specific algorithm and improvements on sequence of

functionalities.

“Simple” Set of Steps

3. Code/Implement

• Turning the design into actual code

• Depending on how much design is completed, one may either

directly engage in conversion to code (language dependent) or

do some more designing.

• Converting input/output to specific UI Interface or I/O format

• Sequencing the processing in the desired order

• Ensuring and converting the processing “algorithm”

correctly to the target language construct.

• figure out how to use language library (properly)

“Simple” Set of Steps

4. Validate/Test the program

• check the program results (via output) with some predetermined

set of inputs.

• The pre-determined inputs are “test cases” and requires some

thinking.

• If the results do not match what is expected then:

• “Debug”

• Fix

• Retest ---- revalidate

• Stop when all test cases produce the expected results.

“Simple” Set of Steps

How many test cases should we develop
and run?

Narrative vs. Reality

• The real process is a messy mix of the idealized process

• At the end, acceptance tests are contractual obligations

• How Long (elapsed time) did it take to complete the work?

• How much effort (total person hours) is expended to do the work?

• Does the solution solve the complete problem?

• How “good” is the work – (code, design, documentation, testing,

etc.)?

Code is “Done!” What Else Matters?

How “good” is the work?

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Think about it for a second, then let’s discuss missing

requirements

Simple Problem

Specifying the problem
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• It turns out that this task is under specified

• We need to clarify

• the program requirements

• the design constraints

Decisions

Complete specification
• The program requirements

• State what the program does

• Qualify what the program does

• Design constraints

• Provide boundaries for ways in which the program can be

created

Decisions

Requirements
• Not exactly the same as in common English

• Requirements cost money

• Many are negotiable. Which ones?

Decisions

Good Fast Cheap

Choose 2

Requirements
• Functional Requirements

• What the program does

• Non-functional Requirements

• How the program behaves

Decisions

Requirements
• Functional Requirements

• What the program does

• “Sort a file”

• Non-functional Requirements

• How the program behaves

• Performance

• Usability

• Maintainability

Decisions

Design Constraints
• What languages can you use?

• What frameworks can you use?

• On what platforms must it run?

Decisions

Requirements vs Design Constraints
• The categories are not always clear cut

• Functional Requirements

• Non-functional Requirements

• Design Constraints

• Some requirements can be de facto design constraints

Decisions

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• What are the functional requirements?

• Brainstorm some

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Functional requirements:

• What is the format of the input data?

• How is the data stored?

• What is “a character”?

• What is “a line”?

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Functional requirements:

• What order should the sort be?

• How should sort react to non-alphabetic characters?

• How should sort react to numbers?

• Upper-case vs lower-case

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Functional requirements:

• Special cases:

• Empty file?

• Empty line?

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Non-Functional requirements:

• Performance Requirements:

• How long should it take?

• Real-time Requirements

• What about the variability in performance? Worst-

case vs. Average-case

• Modifiability in the future?

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Design Constraints

• What’s the user interface like? GUI vs CLI? web-based?

• Typical input size?

• How much should we worry about algorithm?

• Will it fit in memory? on disk? on one rack?

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Platforms

• What OS?

• Often a business decision based on licenses, other

systems

• The computational world is fragmented, but each new

platform incurs additional cost

Simple Problem

Thought Experiment
• “Given a collection of lines of text stored in a file, sort them

in alphabetical order, and write them to another file”

• Schedule

• When does it have to be delivered?

• Speed costs $$

• $$ can’t make everything possible however

Simple Problem

• 1 byte characters (UTF-8)

• Sort ascending, treating digits as characters, upper and

lowercase differently in Unicode order

• Empty lines not special, empty lines make empty files

• 1 minute to sort 100 lines of 100 characters

• no real-time requirements

• no modifiability requirements

• We should have a GUI, run on Mac, in Java

• typical input size will be 100 lines

• For Prof. Patterson: Due ASAP

Thought Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

Testing
• Acceptance Tests

• High-level evaluations by a client, contractually bound

• Do a sorting walk-through of examples

• UI Tests

• Automated tests that simulate UI input

• Functional tests

• Automated tests that simulate scenarios

• JUnit tests

• Automated tests that test method and class specs

Decisions

Testing
• “Extreme Programming” methodology

• Write the tests before you write the code

Decisions

Estimating Effort (aka Project Management)
• Breaking down a problem into sub-tasks

• Estimating the time for each

• Assigning a cost to the project

Decisions

Exercise
Write a “program” in your favorite language that will accept
numerical numbers as inputs, compute the average, and output
the answer.

Provide an estimate within one minute:

How long (in elapsed-time) would it take you to implement this
solution?

How much overall effort (in person-hours) will this take?

How well will your solution match the problem?

How good is your code/design/documentation/testing?

Decisions

Estimating Effort
• Did you include meal breaks, rest breaks, bathroom breaks?

• Did you break down the task?

• Did you include GUI? Testing? Bug fixing?

Decisions

Estimating Effort
• This is one of the toughest problems in software project

management.

• Accurate estimates are very hard to make

• Estimates should be made by the person assigned to the

task

• Hopefully after some reflection and data on performance.

• Pivotal Tracker (video), JIRA (video)

Decisions

http://www.pivotaltracker.com/help/articles/quick_start/
https://youtu.be/8KPoZ5g8NqU

• How long (in elapsed-time) would it take you to implement this

solution?

• Class Answer: 10 min. (A); 15 min (B); 1 hr. (C);

• How much overall effort (in person-hours) will this take?

• Class Answer: 10 person min. ; 15 person min. ; 1 person

hour; 3 person-hrs

• Will your solution match the problem?

• Class Answer: YES!

• How “good” will your solution be?

• Class Answer: Awesome!

Previous Class Answers

• How long do you think assignment #1 would take?

• 1 hr --- 7 people

• 2 hrs --- 6 people

• 3 hrs --- 2 people

• 10 hrs --- 3 people

• Real data from class:

• Elapsed time: range was 5 days to 46 minutes – mostly

between 1 to 3 hours

• Effort: range was 8 person-hours to 40 person-minutes –

mostly between 1 person-hour to 3 person-hours

Some “Previous Class” Inputs

Conventions help teams move faster
• Teams need to agree on syntax conventions and stick to

them

• When do you use capital letters?

• How are things named?

• How are comments utilized?

• Testing before giving code to others

• Having someone else review your code before sharing

Implementation

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• 10:00 - started

• 10:15 - Eclipse crashed

• 10:30 - Decide initial design was bad

• 11:00 - laptop battery died - no charger - stop

• 13:00 - restart

• 13:21 - done debugging

• 13:36 - done writing tests

• effort ~ 1.6 person hours

• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment

• ideal time or effort: straight through with no interruptions

• units: e.g., person-hours, person-days, etc.

• elapsed time or duration: actual calendar time including everything

• units: e.g., days, weeks, etc.

• effort estimate:

• 220 minutes low

(on average)

• elapsed estimate:

• 986 minutes high

(on average)

• Friend stopped by interrupted me.

• Had to go to the ER

• Distracted by thing near me

• Lot of problems converting strings to text

• Test files changed, set me back

• sleep

• needed to clarify assignment

• chatting with roommate

• bug fix

• getting help

• sleep

• other homework

• I needed to work on other hw

Moving from

writing a program to building a system

• What’s the difference?

Building a System

https://flic.kr/p/a8724x

https://flic.kr/p/a8724x

• What’s the difference?

Moving from

writing a program to building a system

Building a System

https://flic.kr/p/r3meit

https://flic.kr/p/r3meit

Moving from

writing a program to building a system

• What’s the difference?

Building a System

https://flic.kr/p/r3meithttps://flic.kr/p/a8724x

https://flic.kr/p/r3meit
https://flic.kr/p/a8724x

Moving from

writing a program to building a system

• What’s the difference?

Building a System

https://flic.kr/p/r3meithttps://flic.kr/p/a8724x

• Size, which only matters because of increased complexity

https://flic.kr/p/r3meit
https://flic.kr/p/a8724x

Complexity Increases Everywhere

Building a System

Problem SolutionTransformation

Complexity Increases Everywhere

Building a System

Problem

SolutionTransformation

increases in size
and complexity

Complexity Increases Everywhere

Building a System

Problem Transformation

increased effort
due to size and

complexity

Solution

increases in size
and complexity

Complexity Increases Everywhere

Building a System

Problem Transformation

increases in size
and complexity

Solution

increases in size
and complexity

increased effort
due to size and

complexity

Complexity

Building a System

Complexity
• Breadth

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

• More major functions

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

• More major functions

• More features in each functional area

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

• More major functions

• More features in each functional area

• More varieties of interfaces to users, internal and

external systems

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

• More major functions

• More features in each functional area

• More varieties of interfaces to users, internal and

external systems

• More simultaneous users, more types of users

Building a System

Complexity
• Breadth

• The sheer number of issues to be addressed

• More major functions

• More features in each functional area

• More varieties of interfaces to users, internal and

external systems

• More simultaneous users, more types of users

• More data, types of data and data structures

Building a System

For our Assignment 1

Topical Heading

For our Assignment 1
• What is it again?

Topical Heading

For our Assignment 1
• What is it again?

Topical Heading

For our Assignment 1
• What is it again?

• How would our solution change if the input size was

increased to 1 trillion?

Topical Heading

For our Assignment 1
• What is it again?

• How would our solution change if the input size was

increased to 1 trillion?

Topical Heading

For our Assignment 1
• What is it again?

• How would our solution change if the input size was

increased to 1 trillion?

• How would our solution change if the numbers were very

large?

Topical Heading

Complexity

Building a System

Complexity
• Depth

Building a System

Complexity
• Depth

• More linkages and connections

Building a System

Complexity
• Depth

• More linkages and connections

• Data sharing among the functionalities & logic

Building a System

Complexity
• Depth

• More linkages and connections

• Data sharing among the functionalities & logic

• Control Passing among functionalities

Building a System

Start

Perform Task A

Perform Task B

Perform Task C

Stop

Simple Task

Start

Perform Task A

Perform Task B

Perform Task C

Stop

Simple Task
Start

Perform Task A1

Perform Task B

Perform Task C

Stop

Perform Task A2

Signal?

Wait

Increased Complexity

Board work - Modified Assignment 1

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

• Additionally show the largest and smallest of the read-in

numbers

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

• Additionally show the largest and smallest of the read-in

numbers

• Where is the increased complexity?

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

• Additionally show the largest and smallest of the read-in

numbers

• Where is the increased complexity?

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

• Additionally show the largest and smallest of the read-in

numbers

• Where is the increased complexity?

• Additionally show the numbers in sorted ascending order

Building a System

Board work - Modified Assignment 1
• Compute and show the average of the read-in numbers

• Additionally show the largest and smallest of the read-in

numbers

• Where is the increased complexity?

• Additionally show the numbers in sorted ascending order

• Where is the increased complexity?

Building a System

Handling complexity

Building a System

Handling complexity
• Strategy 1: Simplification

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

• Modularization of the solution

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

• Modularization of the solution

• Separation of concerns of the problem and the solution

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

• Modularization of the solution

• Separation of concerns of the problem and the solution

• Possibly reduce the problem

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

• Modularization of the solution

• Separation of concerns of the problem and the solution

• Possibly reduce the problem

Building a System

Handling complexity
• Strategy 1: Simplification

• Decomposition of the problem and the solution

• Modularization of the solution

• Separation of concerns of the problem and the solution

• Possibly reduce the problem

• Incrementally address the problem components

Building a System

Handling complexity

Building a System

Handling complexity
• Strategy 2: Better technology and tools

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

• Multi-developer configuration management

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

• Multi-developer configuration management

• Modeling techniques

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

• Multi-developer configuration management

• Modeling techniques

• Automated testing

Building a System

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

• Multi-developer configuration management

• Modeling techniques

• Automated testing

Building a System

At first this doesn’t seem

to be reducing complexity

Handling complexity
• Strategy 2: Better technology and tools

• Database to handle information and structures of information

• Programming and development platforms

• Computing network

• Multi-developer configuration management

• Modeling techniques

• Automated testing

Building a System

At first this doesn’t seem

to be reducing complexity

Handling complexity

Building a System

Handling complexity
• Strategy 3: Improve process and methodology

Building a System

Handling complexity
• Strategy 3: Improve process and methodology

• Coordinate multiple and different people performing different

tasks

Building a System

Handling complexity
• Strategy 3: Improve process and methodology

• Coordinate multiple and different people performing different

tasks

• Guidance for overlapping incremental tasks

Building a System

Handling complexity
• Strategy 3: Improve process and methodology

• Coordinate multiple and different people performing different

tasks

• Guidance for overlapping incremental tasks

• Guidance for measuring separate artifacts and outcomes

Building a System

Handling complexity
• Strategy 3: Improve process and methodology

• Coordinate multiple and different people performing different

tasks

• Guidance for overlapping incremental tasks

• Guidance for measuring separate artifacts and outcomes

Building a System

Again at first this doesn’t feel like

it is reducing complexity

Handling complexity
• Strategy 3: Improve process and methodology

• Coordinate multiple and different people performing different

tasks

• Guidance for overlapping incremental tasks

• Guidance for measuring separate artifacts and outcomes

Building a System

Again at first this doesn’t feel like

it is reducing complexity

Requirements
Engineering

Code/Unit Test

Design

Support

Integration

Handling Complexity:
Macro Task Breakdown

Requirements
Engineering

Code/Unit Test

Design

Support

Integration

• Who performs what task?

Handling Complexity:
Macro Task Breakdown

Requirements
Engineering

Code/Unit Test

Design

Support

Integration

• Who performs what task?

• How is the task completed with what technique or tool?

Handling Complexity:
Macro Task Breakdown

Requirements
Engineering

Code/Unit Test

Design

Support

Integration

• Who performs what task?

• How is the task completed with what technique or tool?

• When should which task start and end?

Handling Complexity:
Macro Task Breakdown

Requirements
Engineering

Code/Unit Test

Design

Support

Integration

• Who performs what task?

• How is the task completed with what technique or tool?

• When should which task start and end?

• Who should coordinate the people and the tasks?

Handling Complexity:
Macro Task Breakdown

Handling Complexity:
Iterative Process Example

Specific Requirements Specific Requirements Specific Requirements Specific Requirements Specific Requirements

Contextual Inquiry

Integration

Architecture and High-Level Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Code Code Code Code Code

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Support Support

Test/Fix

• Who performs what task?

Handling Complexity:
Iterative Process Example

Specific Requirements Specific Requirements Specific Requirements Specific Requirements Specific Requirements

Contextual Inquiry

Integration

Architecture and High-Level Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Code Code Code Code Code

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Support Support

Test/Fix

• Who performs what task?

• How is the task completed with what technique or tool?

Handling Complexity:
Iterative Process Example

Specific Requirements Specific Requirements Specific Requirements Specific Requirements Specific Requirements

Contextual Inquiry

Integration

Architecture and High-Level Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Code Code Code Code Code

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Support Support

Test/Fix

• Who performs what task?

• How is the task completed with what technique or tool?

• When should which task start and end?

Handling Complexity:
Iterative Process Example

Specific Requirements Specific Requirements Specific Requirements Specific Requirements Specific Requirements

Contextual Inquiry

Integration

Architecture and High-Level Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Code Code Code Code Code

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Support Support

Test/Fix

• Who performs what task?

• How is the task completed with what technique or tool?

• When should which task start and end?

• Who should coordinate the people and the tasks?

Handling Complexity:
Iterative Process Example

Specific Requirements Specific Requirements Specific Requirements Specific Requirements Specific Requirements

Contextual Inquiry

Integration

Architecture and High-Level Design

Detailed Design Detailed Design Detailed Design Detailed Design Detailed Design

Code Code Code Code Code

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Support Support

Test/Fix

Handling Complexity:
Iterative Process Example

https://www.youtube.com/watch?v=szr0ezLyQHY

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?
• Who decides on the priority of the problem?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?
• Who decides on the priority of the problem?
• How is the problem fix returned?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?
• Who decides on the priority of the problem?
• How is the problem fix returned?
• Should all problems be fixed?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?
• Who decides on the priority of the problem?
• How is the problem fix returned?
• Should all problems be fixed?
• What should we do with non-fixed problem?

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

• Seemingly “simple” Test/Fix and Integrate steps:
• Should there be separate & independent test group?
• How should problem be reported and to whom?
• How much information must accompany a problem report?
• Who decides on the priority of the problem?
• How is the problem fix returned?
• Should all problems be fixed?
• What should we do with non-fixed problem?
• How are fixes integrated back to the system

Handling Complexity:

Separating out the details is not trivial

Integration

Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix Test/Fix

Non-Technical Considerations for Developing
and Supporting a System

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

• How does one estimate and handle this?

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

• How does one estimate and handle this?

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

• How does one estimate and handle this?

• Assignment and Communications Expansion?

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

• How does one estimate and handle this?

• Assignment and Communications Expansion?

• Do we need some process?

Building a System

Non-Technical Considerations for Developing
and Supporting a System

• Effort & Schedule Expansion

• How does one estimate and handle this?

• Assignment and Communications Expansion?

• Do we need some process?

• Do we need some tools?

Building a System

Increased complexity means increased human
resources

Building a system

(n)(n� 1)

2

2 people

1 path

4 people

6 paths

6 people

15 paths

Consider communication errors as well

A Large, Complex System
• Building “Mission critical” or “Business critical” system (e.g.

payroll) requires (1) several separate activities performed by
(2)more than 1 person (e.g. 50 ~ 100):

• Requirements: gathering, analysis, specification, and

agreement

• Design: abstraction, decomposition, cohesion, interaction

and coupling analysis

• Implementation: coding and unit testing

• Integration and tracking of pieces and parts

• Separate testing: functional testing, component testing,

system testing, and performance testing

• Packaging and releasing the system

Building a system

Need to support the system (for real production) 

• Pre-release: preparation for education & support:

• Number of expected users

• Number of “known problems” and expected quality

• Amount of user and support personnel training

• number of fix and maintenance cycle

• Post-release: preparation for user and customer support:

• Call center and problem resolutions

• Major problem fixes and code changes

• Functional modifications and enhancements

Building a system

https://flic.kr/p/eeQ512

https://flic.kr/p/dx3QAu

https://flic.kr/p/eeQ512
https://flic.kr/p/dx3QAu

Need to support the system (for real production) 

• Pre-release: preparation for education & support:

• Number of expected users

• Number of “known problems” and expected quality

• Amount of user and support personnel training

• number of fix and maintenance cycle

• Post-release: preparation for user and customer support:

• Call center and problem resolutions

• Major problem fixes and code changes

• Functional modifications and enhancements

Building a system

https://flic.kr/p/eeQ512

https://flic.kr/p/dx3QAu

https://flic.kr/p/eeQ512
https://flic.kr/p/dx3QAu

Need to support the system (for real production) 

• Pre-release: preparation for education & support:

• Number of expected users

• Number of “known problems” and expected quality

• Amount of user and support personnel training

• number of fix and maintenance cycle

• Post-release: preparation for user and customer support:

• Call center and problem resolutions

• Major problem fixes and code changes

• Functional modifications and enhancements

Building a system

https://flic.kr/p/eeQ512

https://flic.kr/p/dx3QAu

https://flic.kr/p/eeQ512
https://flic.kr/p/dx3QAu

Coordination Efforts Required in Systems Development and Support

• Because there are

• more parts,

• more developers

• more users to consider in “Large Systems” than a single

program developed by a single person for a limited number of

users, there is the need for Coordination of (3P’s):

• ‘Processes’ and methodologies to be used

• Final ‘product’ and intermediate artifacts

• ‘People’ (developers, support personnel, and users)

Building a system

Building a system
requires software

engineering

https://flic.kr/p/cNotkw

https://flic.kr/p/cNotkw

