WRITING A PROGRAM CS 130

Creative Software Architectures for Collaborative Projects

Prof. Donald J. Patterson

Content adapted from Essentials of Software Engineering 3rd edition by Tsui, Karam, Bernal Jones and Bartlett Learning

Overview

- Introduction
- Interaction Design
- Decisions
- Requirements
- Design Constraints
- Design Decisions
- Testing
- Implementation

Overview

Introduction

- Interaction Design
- Decisions
- Requirements
- Design Constraints
- Design Decisions
- Testing
- Implementation

Writing a program

- Creating software is a team effort
- Teams require governance
 - Leadership
 - Processes
 - Standards
 - Institutional Artifacts that transcend an individual

Team sizes

- Individuals
 - Personal projects, school projects, learning
- Pizza sized teams
- Federated teams
 - Boeing
 - Microsoft
 - Google

Software Teams

- Software requires understanding abstract arrangements of information
- This requires communication lots of it
- As teams grow the interconnections grow

Software Teams

- Pizza-sized teams limit communication links
- Larger teams require hierarchy to manage complexity
 - This can slow down architecture
 - Architecture becomes influenced by communication structure

7 nodes hierarchical

6 nodes

1 in 4 people need your help.

The Foodbank touches so many people across Santa Barbara County, and each connection is valuable to us. Anyone who connects with the Foodbank is our client – whether in a nutritional, educational, or supporting role.

We all "start" by learning how to code in some programming language.

- With a small, hypothetical, and fairly well defined problem
- Usually the code is within one module

We then learn that the program usually does not work on the first try, second try ----- may be even 5th or 6th try!

- We learn about "testing" the program
- We learn about re-reading and re-thinking the (problem) requirements more carefully --- then find that we may not have all the answers

laybe not in this orde

- We learn about tracing and "debugging" the program
- Then ---- somehow magically ---- we decide that it's "good enough !"

"Simple" Set of Steps

1. Understand the problem

- Contextual Inquiry
 - Study the environment in which the intervention will be deployed
- Requirements Engineering
 - Work with the client to figure out
 - Functionalities
 - Non-functionalities
 - performance, security, modifiability, marketability, etc

"Simple" Set of Steps

2. Perform Some Design

- Organizing the functionalities in some sequence;
 - possibly using some diagrams
- Focus on input/output (data, formats, organization)
- Think about some constraints (non-functionalities) such as speed, UI looks, programming language, dependencies, etc.
- any specific algorithm and improvements on sequence of functionalities.

"Simple" Set of Steps

3. Code/Implement

- Turning the design into actual code
 - Depending on how much design is completed, one may either directly engage in conversion to code (language dependent) or do some more designing.
 - Converting input/output to specific UI Interface or I/O format
 - Sequencing the processing in the desired order
 - Ensuring and converting the processing "algorithm" correctly to the target language construct.
 - figure out how to use language library (properly)

4. Validate/Test the program

- check the program results (via output) with some predetermined set of inputs.
 - The pre-determined inputs are "test cases" and requires some thinking.
 - If the results do not match what is expected then:
 - "Debug"
 - Fix
 - Retest ---- revalidate
 - Stop when all test cases produce the expected results.

How many test cases should we develop and run?

Narrative vs. Reality

- The real process is a messy mix of the idealized process
- At the end, acceptance tests are contractual obligations

Code is "Done!" What Else Matters?

- How Long (elapsed time) did it take to complete the work?
- How much effort (total person hours) is expended to do the work?
- Does the solution solve the complete problem?

 How "good" is the work – (code, design, documentation, testing, etc.)?

How "good" is the work?

Thought Experiment

• "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"

Think about it for a second, then let's discuss missing requirements

a THE FILE · TYPE · LOCATION · SORT BY ALTMA? WORD 5 LINES NON-ALPMADETIC CMAR. · WHAT IS A LINE '?

Specifying the problem

• "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"

It turns out that this task is under specified

- We need to clarify
 - the program requirements
 - the design constraints

Decisions.

Complete specification

- The program requirements
 - State what the program does
 - Qualify what the program does
- Design constraints
 - Provide boundaries for ways in which the program can be created

Decisions.

Requirements

- Not exactly the same as in common English
- Requirements cost money
 - Many are negotiable. Which ones?

Choose 2

Decisions

Requirements

- Functional Requirements
 - What the program does

- Non-functional Requirements
 - How the program behaves

Decisions

Requirements

- Functional Requirements
 - What the program does
 - "Sort a file"
- Non-functional Requirements
 - How the program behaves
 - Performance
 - Usability
 - Maintainability

Decisions

Design Constraints

- What languages can you use?
- What frameworks can you use?
- On what platforms must it run?

Requirements vs Design Constraints

- The categories are not always clear cut
 - Functional Requirements
 - Non-functional Requirements
 - Design Constraints

Some requirements can be de facto design constraints

Thought Experiment

 "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"

- What are the functional requirements?
 - Brainstorm some

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Functional requirements:
 - What is the format of the input data?
 - How is the data stored?
 - What is "a character"?
 - What is "a line"?

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Functional requirements:
 - What order should the sort be?
 - How should sort react to non-alphabetic characters?
 - How should sort react to numbers?
 - Upper-case vs lower-case

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Functional requirements:
 - Special cases:
 - Empty file?
 - Empty line?

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Non-Functional requirements:
 - Performance Requirements:
 - How long should it take?
 - Real-time Requirements
 - What about the variability in performance? Worstcase vs. Average-case
 - Modifiability in the future?

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Design Constraints
 - What's the user interface like? GUI vs CLI? web-based?
 - Typical input size?
 - How much should we worry about algorithm?
 - Will it fit in memory? on disk? on one rack?

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Platforms
 - What OS?
 - Often a business decision based on licenses, other systems
 - The computational world is fragmented, but each new platform incurs additional cost
Simple Problem

Thought Experiment

- "Given a collection of lines of text stored in a file, sort them in alphabetical order, and write them to another file"
- Schedule
 - When does it have to be delivered?
 - Speed costs \$\$
 - \$\$ can't make everything possible however

Thought Experiment

- 1 byte characters (UTF-8)
- Sort ascending, treating digits as characters, upper and lowercase differently in Unicode order
- Empty lines not special, empty lines make empty files
- 1 minute to sort 100 lines of 100 characters
- no real-time requirements
- no modifiability requirements
- We should have a GUI, run on Mac, in Java
- typical input size will be 100 lines
- For Prof. Patterson: Due ASAP

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

Decisions

Testing

- Acceptance Tests
 - High-level evaluations by a client, contractually bound
 - Do a sorting walk-through of examples
- UI Tests
 - Automated tests that simulate UI input
- Functional tests
 - Automated tests that simulate scenarios
- JUnit tests
 - Automated tests that test method and class specs

Decisions

Testing

- "Extreme Programming" methodology
 - Write the tests before you write the code

Estimating Effort (aka Project Management)

- Breaking down a problem into sub-tasks
- Estimating the time for each
- Assigning a cost to the project

<u>Decisions</u>

Exercise

Write a "program" in your favorite language that will accept numerical numbers as inputs, compute the average, and output the answer.

Provide an estimate within one minute:

- How long (in elapsed-time) would it take you to implement this solution?
- How much overall effort (in person-hours) will this take?

How well will your solution match the problem? How good is your code/design/documentation/testing?

Decisions

Estimating Effort

- Did you include meal breaks, rest breaks, bathroom breaks?
- Did you break down the task?
- Did you include GUI? Testing? Bug fixing?

Decisions

Estimating Effort

- This is one of the toughest problems in software project management.
- Accurate estimates are very hard to make
- Estimates should be made by the person assigned to the task
 - Hopefully after some reflection and data on performance.

• Pivotal Tracker (video), JIRA (video)

Previous Class Answers

- How long (in elapsed-time) would it take you to implement this solution?
 - Class Answer: 10 min. (A); 15 min (B); 1 hr. (C);
- How much overall effort (in person-hours) will this take?
 - Class Answer: 10 person min.; 15 person min.; 1 person hour; 3 person-hrs
- Will your solution match the problem?
 - Class Answer: YES!
- How "good" will your solution be?
 - Class Answer: Awesome!

Some "Previous Class" Inputs

- How long do you think assignment #1 would take?
 - 1 hr --- 7 people
 - 2 hrs --- 6 people
 - 3 hrs --- 2 people
 - 10 hrs --- 3 people
- Real data from class:
 - Elapsed time: range was 5 days to 46 minutes mostly between 1 to 3 hours
 - Effort: range was 8 person-hours to 40 person-minutes mostly between 1 person-hour to 3 person-hours

Implementation

Conventions help teams move faster

- Teams need to agree on syntax conventions and stick to them
- When do you use capital letters?
- How are things named?
- How are comments utilized?
- Testing before giving code to others
- Having someone else review your code before sharing

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

- 10:00 started
- 10:15 Eclipse crashed
- 10:30 Decide initial design was bad
- 11:00 laptop battery died no charger stop
- 13:00 restart
- 13:21 done debugging
- 13:36 done writing tests
 - effort ~ 1.6 person hours
 - elapsed time ~ 3.5 hours

effort estimate:

- 220 minutes low
 (on average)
- elapsed estimate:
 - 986 minutes high

(on average)

- ideal time or effort: straight through with no interruptions
 - units: e.g., person-hours, person-days, etc.
- elapsed time or duration: actual calendar time including everything
 - units: e.g., days, weeks, etc.

- Friend stopped by interrupted me.
- Had to go to the ER
- Distracted by thing near me
- Lot of problems converting strings to text
- Test files changed, set me back
- sleep
- needed to clarify assignment
- chatting with roommate
- bug fix
- getting help
- sleep
- other homework
- I needed to work on other hw

Moving from writing a program to building a system

https://flic.kr/p/a8724x

Moving from writing a program to building a system

https://flic.kr/p/r3meit

Moving from writing a program to building a system

What's the difference?

https://flic.kr/p/a8724x

https://flic.kr/p/r3meit

Moving from writing a program to building a system

What's the difference?

Size, which only matters because of increased complexity

https://flic.kr/p/a8724x

https://flic.kr/p/r3meit

Complexity Increases Everywhere

Complexity Increases Everywhere

increases in size and complexity

Complexity Increases Everywhere

Building a System **Complexity Increases Everywhere** Problem Transformation Solution increased effort increases in size due to size and and complexity increases in size complexity and complexity

Complexity

• Breadth

- Breadth
 - The sheer number of issues to be addressed

- Breadth
 - The sheer number of issues to be addressed
 - More major functions

- Breadth
 - The sheer number of issues to be addressed
 - More major functions
 - More features in each functional area

- Breadth
 - The sheer number of issues to be addressed
 - More major functions
 - More features in each functional area
 - More varieties of interfaces to users, internal and external systems
- Breadth
 - The sheer number of issues to be addressed
 - More major functions
 - More features in each functional area
 - More varieties of interfaces to users, internal and external systems
 - More simultaneous users, more types of users

- Breadth
 - The sheer number of issues to be addressed
 - More major functions
 - More features in each functional area
 - More varieties of interfaces to users, internal and external systems
 - More simultaneous users, more types of users
 - More data, types of data and data structures

For our Assignment 1

For our Assignment 1

• What is it again?

For our Assignment 1

• What is it again?

For our Assignment 1

• What is it again?

 How would our solution change if the input size was increased to 1 trillion?

For our Assignment 1

• What is it again?

 How would our solution change if the input size was increased to 1 trillion?

For our Assignment 1

• What is it again?

 How would our solution change if the input size was increased to 1 trillion?

 How would our solution change if the numbers were very large?

Complexity

• Depth

- Depth
 - More linkages and connections

- Depth
 - More linkages and connections
 - Data sharing among the functionalities & logic

- Depth
 - More linkages and connections
 - Data sharing among the functionalities & logic
 - Control Passing among functionalities

Simple Task

Board work - Modified Assignment 1

Board work - Modified Assignment 1

Compute and show the average of the read-in numbers

Board work - Modified Assignment 1

Compute and show the average of the read-in numbers

Board work - Modified Assignment 1

• Compute and show the average of the read-in numbers

 Additionally show the largest and smallest of the read-in numbers

Board work - Modified Assignment 1

• Compute and show the average of the read-in numbers

- Additionally show the largest and smallest of the read-in numbers
 - Where is the increased complexity?

Board work - Modified Assignment 1

• Compute and show the average of the read-in numbers

- Additionally show the largest and smallest of the read-in numbers
 - Where is the increased complexity?

Board work - Modified Assignment 1

• Compute and show the average of the read-in numbers

- Additionally show the largest and smallest of the read-in numbers
 - Where is the increased complexity?

Additionally show the numbers in sorted ascending order

Board work - Modified Assignment 1

• Compute and show the average of the read-in numbers

- Additionally show the largest and smallest of the read-in numbers
 - Where is the increased complexity?

- Additionally show the numbers in sorted ascending order
 - Where is the increased complexity?

Handling complexity

Strategy 1: Simplification

- Strategy 1: Simplification
 - Decomposition of the problem and the solution

- Strategy 1: Simplification
 - Decomposition of the problem and the solution
 - Modularization of the solution

- Strategy 1: Simplification
 - Decomposition of the problem and the solution
 - Modularization of the solution
 - Separation of concerns of the problem and the solution

- Strategy 1: Simplification
 - Decomposition of the problem and the solution
 - Modularization of the solution
 - Separation of concerns of the problem and the solution
 - Possibly reduce the problem

- Strategy 1: Simplification
 - Decomposition of the problem and the solution
 - Modularization of the solution
 - Separation of concerns of the problem and the solution
 - Possibly reduce the problem

Handling complexity

- Strategy 1: Simplification
 - Decomposition of the problem and the solution
 - Modularization of the solution
 - Separation of concerns of the problem and the solution
 - Possibly reduce the problem

Incrementally address the problem components

Handling complexity

• Strategy 2: Better technology and tools

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network
 - Multi-developer configuration management

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network
 - Multi-developer configuration management
 - Modeling techniques

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network
 - Multi-developer configuration management
 - Modeling techniques
 - Automated testing

Handling complexity

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network
 - Multi-developer configuration management
 - Modeling techniques
 - Automated testing

At first this doesn't seem to be reducing complexity

Handling complexity

- Strategy 2: Better technology and tools
 - Database to handle information and structures of information
 - Programming and development platforms
 - Computing network
 - Multi-developer configuration management
 - Modeling techniques
 - Automated testing

At first this doesn't seem to be reducing complexity

Handling complexity

Strategy 3: Improve process and methodology

- Strategy 3: Improve process and methodology
 - Coordinate multiple and different people performing different tasks

- Strategy 3: Improve process and methodology
 - Coordinate multiple and different people performing different tasks
 - Guidance for overlapping incremental tasks

- Strategy 3: Improve process and methodology
 - Coordinate multiple and different people performing different tasks
 - Guidance for overlapping incremental tasks
 - Guidance for measuring separate artifacts and outcomes

- Strategy 3: Improve process and methodology
 - Coordinate multiple and different people performing different tasks
 - Guidance for overlapping incremental tasks
 - Guidance for measuring separate artifacts and outcomes
 Again at first this doesn't feel like
 Again at first this complexity
 it is reducing complexity

- Strategy 3: Improve process and methodology
 - Coordinate multiple and different people performing different tasks
 - Guidance for overlapping incremental tasks
 - Guidance for measuring separate artifacts and outcomes
 Again at first this doesn't feel like
 Again at first this complexity
 it is reducing complexity

• How is the task completed with what technique or tool?

- How is the task completed with what technique or tool?
- When should which task start and end?

- How is the task completed with what technique or tool?
- When should which task start and end?
- Who should coordinate the people and the tasks?

• When should which task start and end?

- When should which task start and end?
- Who should coordinate the people and the tasks?

NORDSTROM INNOVATION LAB

Seemingly "simple" Test/Fix and Integrate steps:

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?
 - Who decides on the priority of the problem?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?
 - Who decides on the priority of the problem?
 - How is the problem fix returned?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?
 - Who decides on the priority of the problem?
 - How is the problem fix returned?
 - Should all problems be fixed?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?
 - Who decides on the priority of the problem?
 - How is the problem fix returned?
 - Should all problems be fixed?
 - What should we do with non-fixed problem?

- Seemingly "simple" Test/Fix and Integrate steps:
 - Should there be separate & independent test group?
 - How should problem be reported and to whom?
 - How much information must accompany a problem report?
 - Who decides on the priority of the problem?
 - How is the problem fix returned?
 - Should all problems be fixed?
 - What should we do with non-fixed problem?
 - How are fixes integrated back to the system

Non-Technical Considerations for Developing and Supporting a System
Non-Technical Considerations for Developing and Supporting a System

• Effort & Schedule Expansion

- Effort & Schedule Expansion
 - How does one estimate and handle this?

- Effort & Schedule Expansion
 - How does one estimate and handle this?

Non-Technical Considerations for Developing and Supporting a System

- Effort & Schedule Expansion
 - How does one estimate and handle this?

• Assignment and Communications Expansion?

- Effort & Schedule Expansion
 - How does one estimate and handle this?

- Assignment and Communications Expansion?
 - Do we need some process?

- Effort & Schedule Expansion
 - How does one estimate and handle this?

- Assignment and Communications Expansion?
 - Do we need some process?
 - Do we need some tools?

Increased complexity means increased human resources

2 people 1 path

4 people 6 paths 6 people 15 paths

Consider communication errors as well

A Large, Complex System

- Building "Mission critical" or "Business critical" system (e.g. payroll) requires (1) several separate activities performed by (2)more than 1 person (e.g. 50 ~ 100):
 - Requirements: gathering, analysis, specification, and agreement
 - Design: abstraction, decomposition, cohesion, interaction and coupling analysis
 - Implementation: coding and unit testing
 - Integration and tracking of pieces and parts
 - Separate testing: functional testing, component testing, system testing, and performance testing
 - Packaging and releasing the system

Need to support the system (for real production)

- Pre-release: preparation for education & support:
 - Number of expected users
 - Number of "known problems" and expected quality
 - Amount of user and support personnel training
 - number of fix and maintenance cycle
- Post-release: preparation for user and customer support:
 - Call center and problem resolutions
 - Major problem fixes and code changes
 - Functional modifications and enhancements

https://flic.kr/p/eeQ512 https://flic.kr/p/dx3QAu

Need to support the system (for real production)

- Pre-release: preparation for education & support:
 - Number of expected users
 - Number of "known problems" and expected quality
 - Amount of user and support personnel training
 - number of fix and maintenance cycle
- Post-release: preparation for user and customer support:
 - Call center and problem resolutions
 - Major problem fixes and code changes
 - Functional modifications and enhancements

https://flic.kr/p/eeQ512 https://flic.kr/p/dx3QAu

Need to support the system (for real production)

- Pre-release: preparation for education & support:
 - Number of expected users
 - Number of "known problems" and expected quality
 - Amount of user and support personnel training
 - number of fix and maintenance cycle
- Post-release: preparation for user and customer support:
 - Call center and problem resolutions
 - Major problem fixes and code changes
 - Functional modifications and enhancements

https://flic.kr/p/dx3QAu

Coordination Efforts Required in Systems Development and Support

- Because there are
 - more parts,
 - more developers
 - more users to consider in "Large Systems" than a single program developed by a single person for a limited number of users, there is the need for Coordination of (3P's):
 - 'Processes' and methodologies to be used
 - Final 'product' and intermediate artifacts
 - 'People' (developers, support personnel, and users)

WESTMONT COMPUTER SCIENCE

