CS 045

STRUCT

® The forerunner of the class

#include <stdio.h>
int main(){

struct protoclass {
int a;
int b;
char c;
float d;

®

N N

o/

PO®OOO
RO U

I

DL owe ~e

-, N

printf("struct size: %$lu\n",sizeof(e));

return 0;

—

STRUCT

° The forerunner Of the C]'aSS u

#include <stdio.h>
int main(){

struct protoclass {
int a;
int b;
char c;
float d;

®

N N

o/

PO®OOO
RO U

I

DL owe ~e

-, N

printf("struct size: %$lu\n",sizeof(e));

return 0;

—

ARRAY

® aka, List

#include <stdio.h>
int main(){
int a[l0];

int b[5];
double c[2];

bt e ek ek = OO ON W O
G0 O b B GO se Se ~e ~e ~

A NE N N

VOB WN KO
[S S S — ——

oo Lo

c[0] = 0.0;

printf("sizeof(a) is %lu\n",sizeof(a)):;
printf("sizeof(b) is %lu\n",sizeof(b));
printf("sizeof(c) is %lu\n",sizeof(c));
printf("sizeof(a[0]) is %lu\n",sizeof(a
printf("sizeof(b[0]) is %lu\n",sizeof(b
printf("sizeof(c[0]) is %lu\n",sizeof(c

printf("a: %p\n",a);

printf("&(a[0]): %$p\n",&(a[0]));
printf("&(a[l]): $p\n",&(a[l])):

return 0;

(01)):
(01)):
(01)):

ARRAY

® aka, List

c[0] = 0.0;

printf("sizeof(a) is %lu\n",sizeof(a)):;
printf("sizeof(b) is %lu\n",sizeof(b));
printf("sizeof(c) is %lu\n",sizeof(c));
printf("sizeof(a[0]) is %lu\n",sizeof(a[0]));
printf("sizeof(b[0]) is %lu\n",sizeof(b[0])):;
printf("sizeof(c[0]) is %lu\n",sizeof(c[0]));
printf("a: %p\n",a);

printf("&(a[0]): %$p\n",&(a[0]));
printf("&(a[l]): $p\n",&(a[l])):

return 0;

sizeof(a) is 40
. , 'sizeof(b) is 20
#include <stdio.h> sizeof(c) is 16
int main(){ sizeof(a[0]) is 4
sizeof(b[0]) is 4
int a[l10]; sizeof(c[0]) is 8
int b[5]; a: 0x7£££57052340
double c[2]; &(a[0]): Ox7£££57052340
a[01=0; &(a[l]): Ox7£££57052344
a[l]=1; *
af[2]=4;
a[3]1=6;
af[4]=8;
a[s5]1=10;
a[6]=12;
a[7]=14;
a[8l=16;
a[2]1=18;

\

MULTI-DIMENSIONAL ARRAY

® aka, Matrix

#include <stdio.h>

int main(){

int a[2];
int b[2][3]);
double c[5][5][5]);

0

1| ~e

1;
[1] = 1;

Qoo
B = O

(U]
(L1[01]
(410°]

W =

printf("sizeof(a) is %lu\n",sizeof(a));
printf("sizeof(b) is %lu\n",sizeof(b));
printf("sizeof(c) is %lu\n",sizeof(c));
printf("sizeof(a[0]) is %lu\n",sizeof(a[0]))
printf("sizeof(b][) is %lu\n",sizeof(b[1 s
(
(

printf("sizeof(c]| [1]) is %lu\n",sizeof
printf("sizeof(c| [2]) is %lu\n",sizeof

1][1] i[ll))
41[3] c[4][3
1]1[1] c[1l][L

Sd bd ™

return 0;

[(11)):
[(2]1)):

\

MULTI-DIMENSIONAL ARRAY

® aka, Matrix

#include <stdio.h>

int main(){
int a[2];
int b[2][3
double c[5

0

[1]

Qoo
= - O
Il

1| ~e

(U]
(L1[01]
(410°]

W =

]:
1051057

10

’
=1;

sizeof(a) is 8
sizeof(b) is 24
sizeof(c) is 1000
sizeof(a[0]) is 4
sizeof(b[1l][1]) is 4
sizeof(c[4][3][1]) is 8
sizeof(c[1][1][2]) is 8

[

printf("sizeof(a) is %lu\n",sizeof(a));
printf("sizeof(b) is %lu\n",sizeof(b));
printf("sizeof(c) is %lu\n",sizeof(c));
printf("sizeof(a[0]) is %lu\n",sizeof(a[0]))
printf("sizeof(b[1][1]) is %lu\n",sizeof(bJ[l
printf("sizeof(c[4][3][1]) is %lul\n",sizeof(
printf("sizeof(c[1][1][2]) is %lu\n",sizeof(

return 0;

\

STRINGS IN C

® An array of chars that end with a zero

® Shorthand for such an array is “<string>”

#include <stdio.h>
int main () {

{IPI' Ial’ Itl' ltI' Iel' Irl' ISI' Iol’ Inl' l\ol};
"Patterson”;

char name_a[1l0]
char name b[10]

printf("Name_a: %$s\n", name_a);
printf("“"Name b: %s\n", name b);

return 0;

\

STRINGS IN C

® An array of chars that end with a zero

® Shorthand for such an array is “<string>”

Name a: Patterson

lName b: Patterson
#include <stdio.h> —

int main () {

{IPI' Ial' ItI' Itl' Iel' IrI' ISI' IOI' InI' l\ol};
"Patterson”;

char name_a[1l0]
char name b[10]

printf("Name_a: %$s\n", name_a);
printf("“"Name b: %s\n", name b);

return 0;

ION I RC

IF-ELSE STATEMENT

#include <stdio.h>

int main(){

int x = 5;

if ((x < 10){
printf("x is less than 10\n");
} else {
printf("x is greater than 10\n");

}
if (x == 10
printf("x equals 10\n");
} else {
printf("x does not equal 10\n");
}

return 0O;

JIN | K

IF-ELSE STATEMENT

#include <stdio.h>

int main(){

X 1is less than 10
'x does not equal 10
int x = 5;

if ((x < 10){

printf("x is less than 10\n");
} else {

printf("x is greater than 10\n");
}

if ((x == 10){

printf("x equals 10\n");
} else {

printf("x does not equal 10\n");
}

return 0O;

|

JONIRC

SWITCH STATEMENT

#include <stdio.h>

® shorthand for a
sequence of if
statements

int main(){

int x = 5;

switch(x) {

case l: printf("
case 2: printf(”
case 3: printf(”
case 4: printf("”
case 5: printf(”
default:printf ("

}
int y = 4;

switch(x) {

case l: printf("y

break;

case 2: printf("y

break;

case 3: printf("y

break;

case 4: printf("y

break;

case 5: printf("y

break;

default:printf("y

return 0;

is
is
is
is
is
is

is
is
is
is
is

is

1\nll);
l\nll);
l\nll);
1\nll);
l\nll);
less than 1 or greater than 5\n");

1\n");
2\n");
3\n");
4\n");
5\n");

less than 1 or greater than 5\n");

p—

\

o)\

SWITCH STATEMENT S Tg

® shorthand for a
sequence of if
statements

#include <stdio.h>

int main(){

int x = 5;

switch(x)
case
case
case
case
case

default:printf ("

}

int y = 4;

switch(x)
case

case
case
case

case

default:printf("y is less than 1 or greater than 5\n"); B

return 0;

}

X is less than 1 or greater than 5
y is 5

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII"'

{
l: printf("x is 1\n");
2: printf("x is 1\n");
3: printf("x is 1\n");
4: printf("x is 1\n");
5: printf("x is 1\n");
x is less than 1 or greater than 5\n");

{

l: printf("y is 1\n");
break;

2: printf("y is 2\n");
break;

3: printf("y is 3\n");
break;

4: printf("y is 4\n");
break;

5: printf("y is 5\n");
break;

p—

\

WHILE

#include <stdio.h>

int main(){

int x = 5;

while(x >= 0){
printf("x is %d\n",x);

//x = x -1
X-=;

}

return 0O;

}

WHILE

#include <stdio.h>

int main(){

int x = 5;

while(x >= 0){
printf("x is %d\n",x);

//x = x -1
X-=;

}

return 0O;

I

is
is
is
is
is
is

O = N W W

FOR

#include <stdio.h>

int main(){

int x = 5;

for(x = 0; x < 5; x++){
prlntf(x is %d\n",x);
}

return 0

FOR

#include <stdio.h>

int main(){

int x = 5;

for(x = 0; x < 5; x++){

printf(“x is %d\n",x);
}

return 0

x is 0
X is 1
X 1s 2
X 1is 3
X 1s 4
—

#include <stdio.h>

void greeting(char timeOfDay[])({

printf("Good %s\n",timeOfDay);

int main(){
greeting("morning”);
greeting("afternoon”);
greeting("evening");

return 0O;

#include <stdio.h>

void greeting(char timeOfDay([]) {

printf("“"Good %$s\n",timeOfDay);

int main(){

greeting("morning”);
greeting("afternoon”);
greeting("evening");

return 0O;

Good morning
Good afternoon

Good evening

A\ @)\

#include <stdio.h>

int

int

doubleMe(int x){

X = X + X3
return Xx;

main(){

int x = 2;

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x)):;
printf("x is %d\n",x);

printf("\n");

X = 53

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x)):;
printf("x is %d\n",x);

printf("\n");

X = 100;

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x));
printf("x is %d\n",x);

printf("\n");

return 0;

int doubleMe(int x){

int main(){

A\ @)\

X is 2
#include <stdio.h> When you
X is 2

X = X + X3

int x = 2;

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x)):;
printf("x is %d\n",x);

printf("\n");

X = 53

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x)):;
printf("x is %d\n",x);

printf("\n");

X = 100;

printf("x is %d\n",x);

printf("When you double %d you get %d\n",x,doubleMe(x));
printf("x is %d\n",x);

printf("\n");

return 0;

X is 5
When you
return x; X 1s 5

x is 100
When you
x is 100

‘lIII'IIIIIIIIIIIIIIIIIIIII"

double 2 you get 4

double 5 you get 10

double 100 you get 200

\

MEMORY

® C programs actually have two kinds of memory

® One kind of memory is for frames and local variables -
that’s stack memory

® When one makes a recursive program that calls itself
forever, one runs out of stack memory

MEMORY

® The second kind of memory is heap memory

® You can think of memory as a long list of O’s and 1’s

o,o0;,0{1tj04¢ty1t40(1y1,0;0;0{1v,0¢{1tyt+y0(1ty1+y04}1}04}{1{1jo0|t+y1,0(0(0}1jo0}j1{1j0j|1/1

\

MEMORY

® The O’s and 1’s are chunked into bytes of 8 bits

MEMORY

® Each byte is given an address

® Similar to a street address for a house
® So that the computer can find the byte

ojo,0(1j0(1417;0(1{1,0;0;0(1v;0}|1t4yo06¢1+4170(1j0(1}{1jo0(1;1j0y0jo0y1;0}{1(1j0}|1(1}j0|1|1

MEMORY

® Each byte is given an address

® Similar to a street address for a house
® So that the computer can find the byte

MEMORY

® If xis a 16-bit integer, it uses 2 bytes

MEMORY

® if you make a function call, then a copy is made on the

stack

MEMORY

® if you make a function call, then a copy is made on the

stack

MEMORY

® And when the function returns it is removed

MEMORY

® And when the function returns it is removed

MEMORY

® For function calls and method calls, this copying and
destroying is handled automatically

® on stack memory

MEMORY

® If a programmer wants changes to x to persist, then she
has to manage the memory herself

® and that requires using the address of x

MEMORY

® In this picture, the address of x is “2”

® 2 1is a pointer to x

® If we want to keep track of pieces of memory use
pointers

POINTERS

® We've seen how to declare an integer

int Xx;
® If we want to declare a pointer to an integer, we use the
star notation ,
int xy;
® The type of this variable includes the star

int x

POINTERS

#include <stdio.h>

int main(){

int a = 5;
int *pointerToA = &a;

printf("The value of a is \t\t%d\n",a);
printf("The sizeof(a) is \t\t%lu\n",sizeof(a));
printf("The address of a is \[l]\t%p\n",&a);

printf("The value of pointerToA is \t%$p\n",pointerToA);

printf("“"The sizeof(pointerToA) is \t%lu\n",sizeof(pointerToA));
printf("“"The address of pointerToA is \t%p\n",&pointerToA);

return 0O;

POINTERS

#include <stdio.h>

int main(){

int a = 5;
int *pointerToA

return 0O;

&a;

The
The
The
The
The
The

[—

value of a is

sizeof(a) is

address of a is

value of pointerToA is
sizeof (pointerToA) is
address of pointerToA is

5
-
Ox7£££532£0348
Ox7£££532£0348
8
Ox7£££532£0340

"IIIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!’I'

printf("The value of a is \t\t%d\n",a);
printf("The sizeof(a) is \t\t%$lu\n",sizeof(a));
printf("The address of a is \[\t%p\n",&a);

printf("The value of pointerToA is \t%$p\n",pointerToA);
printf("“"The sizeof(pointerToA) is \t%lu\n",sizeof(pointerToA));
printf("The address of pointerToA is \t%p\n",&pointerToA);

USING POINTERS

® To get the address of a variable use an ampersand

® To get the value that an address points to use a star
® this is called “dereferencing”

int y = 5;

int *xx = &y;

(xx) = 6;

printf("y = %d\n",y);

® “x points toy”

USING POINTERS

® To get the address of a variable use an ampersand

® To get the value that an address points to use a star
® this is called “dereferencing”

int y = 5;

int *xx = &y;

(xx) = 6; |y-6
printf("y = %d\n",y);

® “x points toy”

SPECIAL ADDRESS

® NULL is a special value

® it is address “0”

® You can set pointers to NULL and then use that in
conditionals

int y = 5;
int *xx = NULL;

if(x == NULL){
X = &y;
}

(xx) = 6;
printf("y = %d\n",y);

SPECIAL ADDRESS

® NULL is a special value
® it is address “0”

® You can set pointers to NULL and then use that in

conditionals
int y = 5;
int *xx = NULL;

if(x == NULL){
X = &y;
}

(xx) = 6;

printf("y = %d\n",y);

Y

BE CAREFUL!

® Just because you have a pointer doesn’t mean it points
to something meaningful!

® You must assign it first

#include <stdio.h>

int main(){

int y = 5;
int *x;
(*x) = 63

printf("y = %d\n",y):;

return 0;

BE CAREFUL!

® Just because you have a pointer doesn’t mean it points

to something meaningful!
® You must assign it first

#include <stdio.h>

int main(){

int y = 5;
int *x;
(*x) = 63

printf("y = %d\n",y):;

return 0;

BE CAREFUL!

® Just because you have a pointer doesn’t mean it points

to something meaningful!
® You must assign it first

#include <stdio.h>
int main(){

int y = 5;
int *x;

printf("y = %d\n",y):;

return 0;

BE CAREFUL!

® Just because you have a pointer doesn’t mean it points

to something meaningful!
® You must assign it first

#include <stdio.h>
int main(){

int y = 5;
int *x;

printf("y = %d\n",y):;

return 0;

BE CAREFUL!

® Don’t dereference a NULL pointer!

#include <stdio.h>
int main(){
int *x = NULL;
(*x) = 63

return 0;

}

Segmentation fault: 11
>

\ - POILN <

YOU CAN HAVE A POINTER TO ANY KIND
OF VARIABLE

® Using the star notation is how you define it

#include <stdio.h>
#include <inttypes.h>

int main(){

int *A;

char *B;

double *(C;
int32 t *D;
struct time *E;

return 0;

MEMOR

WHAT’'S NEXT?

® Advanced programmers can use pointers to keep track
of heap memory

® heap memory doesn’t get destroyed unless the
programmer tells the computer to destroy it

SUMMARY

® pointers are a new type

® You can have a pointer to any other type

® The don’t keep track of data
® they keep track of the address of data
® the “point” to the data

® pointers allow you to pass parameters to functions
when you want changes to persist after the function is
done and the frame is destroyed

® You can dereference a pointer to access the data

WORK IT OUT

® Create a program that will print out numbers from 1 to
100 backwards

® Create a program that

® will create an array of integers with 100 elements in
it

® set each of the elements to twice its index value.
® output the address of each element of the array

® Create a function that doubles the value of its
argument. Use pointers to make the changes persist
even after the function call is complete.

AL
AT
ainins

WESTMONT

JIMF

