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MULTI-DIMENSIONAL ARRAY
• aka, Matrix
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STRINGS IN C
• An array of chars that end with a zero 

• Shorthand for such an array is “<string>”
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SWITCH STATEMENT
• shorthand for a 

sequence of if 
statements
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MEMORY
• C programs actually have two kinds of memory 

• One kind of memory is for frames and local variables - 
that’s stack memory 

• When one makes a recursive program that calls itself 
forever, one runs out of stack memory
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MEMORY
• The second kind of memory is heap memory 

• You can think of memory as a long list of 0’s and 1’s
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MEMORY
• The 0’s and 1’s are chunked into bytes of 8 bits
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MEMORY
• Each byte is given an address 

• Similar to a street address for a house 

• So that the computer can find the byte

TYPES IN C : POINTERS

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1



MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• Each byte is given an address 

• Similar to a street address for a house 

• So that the computer can find the byte

TYPES IN C : POINTERS



MEMORY
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• If x is a 16-bit integer, it uses 2 bytes
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• if you make a function call, then a copy is made on the 
stack
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• And when the function returns it is removed
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• For function calls and method calls, this copying and 
destroying is handled automatically  

• on stack memory
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• If a programmer wants changes to x to persist, then she 
has to manage the memory herself 

• and that requires using the address of x
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• In this picture, the address of x is “2” 

• 2 is a pointer to x 

• If we want to keep track of pieces of memory use 
pointers
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POINTERS
• We’ve seen how to declare an integer 

• If we want to declare a pointer to an integer, we use the 
star notation 

• The type of this variable includes the star
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USING POINTERS
• To get the address of a variable use an ampersand 

• To get the value that an address points to use a star 

• this is called “dereferencing” 

• “x points to y”
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SPECIAL ADDRESS
• NULL is a special value 

• it is address “0” 

• You can set pointers to NULL and then use that in 
conditionals
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BE CAREFUL!
• Just because you have a pointer doesn’t mean it points 

to something meaningful! 

• You must assign it first
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BE CAREFUL!
• Don’t dereference a NULL pointer!
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YOU CAN HAVE A POINTER TO ANY KIND 
OF VARIABLE
• Using the star notation is how you define it
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WHAT’S NEXT?

• Advanced programmers can use pointers to keep track 
of heap memory 

• heap memory doesn’t get destroyed unless the 
programmer tells the computer to destroy it

MEMORY



SUMMARY
• pointers are a new type 

• You can have a pointer to any other type 

• The don’t keep track of data 

• they keep track of the address of data 

• the “point” to the data 

• pointers allow you to pass parameters to functions 
when you want changes to persist after the function is 
done and the frame is destroyed 

• You can dereference a pointer to access the data
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WORK IT OUT
• Create a program that will print out numbers from 1 to 

100 backwards 

• Create a program that 

• will create an array of integers with 100 elements in 
it 

• set each of the elements to twice its index value.  

• output the address of each element of the array 

• Create a function that doubles the value of its 
argument.  Use pointers to make the changes persist 
even after the function call is complete.
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