
C
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson

STRUCT
• The forerunner of the class

TYPES IN C

STRUCT
• The forerunner of the class

TYPES IN C

ARRAY
• aka, List

TYPES IN C

ARRAY
• aka, List

TYPES IN C

MULTI-DIMENSIONAL ARRAY
• aka, Matrix

TYPES IN C

MULTI-DIMENSIONAL ARRAY
• aka, Matrix

TYPES IN C

STRINGS IN C
• An array of chars that end with a zero

• Shorthand for such an array is “<string>”

TYPES IN C

STRINGS IN C
• An array of chars that end with a zero

• Shorthand for such an array is “<string>”

TYPES IN C

IF-ELSE STATEMENT

CONTROL STRUCTURES

IF-ELSE STATEMENT

CONTROL STRUCTURES

SWITCH STATEMENT
• shorthand for a

sequence of if
statements

CONTROL STRUCTURES

SWITCH STATEMENT
• shorthand for a

sequence of if
statements

CONTROL STRUCTURES

WHILE

LOOPS

WHILE

LOOPS

FOR

LOOPS

FOR

LOOPS

FUNCTIONS

FUNCTIONS

FUNCTIONS

FUNCTIONS

MEMORY
• C programs actually have two kinds of memory

• One kind of memory is for frames and local variables -
that’s stack memory

• When one makes a recursive program that calls itself
forever, one runs out of stack memory

TYPES IN C : POINTERS

MEMORY
• The second kind of memory is heap memory

• You can think of memory as a long list of 0’s and 1’s

TYPES IN C : POINTERS

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1

MEMORY
• The 0’s and 1’s are chunked into bytes of 8 bits

TYPES IN C : POINTERS

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

MEMORY
• Each byte is given an address

• Similar to a street address for a house

• So that the computer can find the byte

TYPES IN C : POINTERS

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• Each byte is given an address

• Similar to a street address for a house

• So that the computer can find the byte

TYPES IN C : POINTERS

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• If x is a 16-bit integer, it uses 2 bytes

TYPES IN C : POINTERS

x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• if you make a function call, then a copy is made on the
stack

TYPES IN C : POINTERS

x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• if you make a function call, then a copy is made on the
stack

TYPES IN C : POINTERS

x x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• And when the function returns it is removed

TYPES IN C : POINTERS

x x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• And when the function returns it is removed

TYPES IN C : POINTERS

x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• For function calls and method calls, this copying and
destroying is handled automatically

• on stack memory

TYPES IN C : POINTERS

x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• If a programmer wants changes to x to persist, then she
has to manage the memory herself

• and that requires using the address of x

TYPES IN C : POINTERS

x

MEMORY

0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 1

1 2 3 4 5

• In this picture, the address of x is “2”

• 2 is a pointer to x

• If we want to keep track of pieces of memory use
pointers

TYPES IN C : POINTERS

x

POINTERS
• We’ve seen how to declare an integer

• If we want to declare a pointer to an integer, we use the
star notation

• The type of this variable includes the star

TYPES IN C : POINTERS

POINTERS
• We’ve seen how to declare an integer

• If we want to declare a pointer to an integer, we use the
star notation

• The type of this variable includes the star

TYPES IN C : POINTERS

POINTERS
• We’ve seen how to declare an integer

• If we want to declare a pointer to an integer, we use the
star notation

• The type of this variable includes the star

TYPES IN C : POINTERS

USING POINTERS
• To get the address of a variable use an ampersand

• To get the value that an address points to use a star

• this is called “dereferencing”

• “x points to y”

TYPES IN C : POINTERS

USING POINTERS
• To get the address of a variable use an ampersand

• To get the value that an address points to use a star

• this is called “dereferencing”

• “x points to y”

TYPES IN C : POINTERS

SPECIAL ADDRESS
• NULL is a special value

• it is address “0”

• You can set pointers to NULL and then use that in
conditionals

TYPES IN C : POINTERS

SPECIAL ADDRESS
• NULL is a special value

• it is address “0”

• You can set pointers to NULL and then use that in
conditionals

TYPES IN C : POINTERS

BE CAREFUL!
• Just because you have a pointer doesn’t mean it points

to something meaningful!

• You must assign it first

TYPES IN C : POINTERS

BE CAREFUL!
• Just because you have a pointer doesn’t mean it points

to something meaningful!

• You must assign it first

TYPES IN C : POINTERS

BE CAREFUL!
• Just because you have a pointer doesn’t mean it points

to something meaningful!

• You must assign it first

TYPES IN C : POINTERS

!!!!!

BE CAREFUL!
• Just because you have a pointer doesn’t mean it points

to something meaningful!

• You must assign it first

TYPES IN C : POINTERS

!!!!!

BE CAREFUL!
• Don’t dereference a NULL pointer!

TYPES IN C : POINTERS

YOU CAN HAVE A POINTER TO ANY KIND
OF VARIABLE
• Using the star notation is how you define it

TYPES IN C : POINTERS

WHAT’S NEXT?

• Advanced programmers can use pointers to keep track
of heap memory

• heap memory doesn’t get destroyed unless the
programmer tells the computer to destroy it

MEMORY

SUMMARY
• pointers are a new type

• You can have a pointer to any other type

• The don’t keep track of data

• they keep track of the address of data

• the “point” to the data

• pointers allow you to pass parameters to functions
when you want changes to persist after the function is
done and the frame is destroyed

• You can dereference a pointer to access the data

TYPES IN C : POINTERS

WORK IT OUT
• Create a program that will print out numbers from 1 to

100 backwards

• Create a program that

• will create an array of integers with 100 elements in
it

• set each of the elements to twice its index value.

• output the address of each element of the array

• Create a function that doubles the value of its
argument. Use pointers to make the changes persist
even after the function call is complete.

TYPES IN C : POINTERS

