
CACHE MEMORY
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

MEMORY HIERARCHIES

Example Memory
 Hierarchy Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from the L2 cache.

CPU registers hold words
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds
disk blocks retrieved
from local disks.

EXAMPLES OF CACHING IN THE MEMORY
HIERARCHY

Hardware	
MMU	

0	On-Chip	TLB	Address	transla9ons	TLB	

Web	browser	10,000,000	Local	disk	Web	pages	Browser	cache	

Web	cache	

Network	buffer	
cache	

Buffer	cache	

Virtual	Memory	

L2	cache	

L1	cache	

Registers	

Cache	Type	

Web	pages	

Parts	of	files	

Parts	of	files	

4-KB	pages	

64-byte	blocks	

64-byte	blocks	

4-8	bytes	words	

What	is	Cached?	

Web	proxy	
server	

1,000,000,000	Remote	server	disks	

OS	100	Main	memory	

Hardware	4	On-Chip	L1	

Hardware	10	On-Chip	L2	

NFS	client	10,000,000	Local	disk	

Hardware	+	OS	100	Main	memory	

Compiler	0		CPU	core	

Managed	By	Latency	(cycles)	Where	is	it	Cached?	

Disk	cache		 Disk	sectors	 Disk	controller	 100,000	 Disk	firmware	

• CACHE MEMORY ORGANIZATION AND
OPERATION

• PERFORMANCE IMPACT OF CACHES
• THE MEMORY MOUNTAIN
• REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
• USING BLOCKING TO IMPROVE

TEMPORAL LOCALITY

CACHE MEMORY

GENERAL CACHE CONCEPT

0	 1	 2	 3	

4	 5	 6	 7	

8	 9	 10	 11	

12	 13	 14	 15	

8	 9	 14	 3	Cache	

Memory	
Larger,	slower,	cheaper	memory	
viewed	as	par@@oned	into	“blocks”	

Data	is	copied	in	block-sized	
transfer	units	

Smaller,	faster,	more	expensive	
memory	caches	a		subset	of	

the	blocks	

4	

4	

4	

10	

10	

10	

CACHE MEMORIES

¢  Cache	memories	are	small,	fast	SRAM-based	memories	
managed	automa:cally	in	hardware	
!  Hold	frequently	accessed	blocks	of	main	memory	

¢  CPU	looks	first	for	data	in	cache	
¢  Typical	system	structure:	

Main
memory

I/O
bridge Bus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache
memory

GENERAL CACHE ORGANIZATION (S, E, B)
E	=	2e	lines	per	set	

S	=	2s	sets	

set	

line	

0	 1	 2	 B-1	tag	v	

B	=	2b	bytes	per	cache	block	(the	data)	

Cache	size:	
C	=	S	x	E	x	B	data	bytes	

valid	bit	

CACHE READ
E	=	2e	lines	per	set	

S	=	2s	sets	

0	 1	 2	 B-1	tag	v	

valid	bit	
B	=	2b	bytes	per	cache	block	(the	data)	

t	bits	 s	bits	 b	bits	
Address	of	word:	

tag	 set	
index	

block	
offset	

data	begins	at	this	offset	

• Locate	set	
• Check	if	any	line	in	set	
has	matching	tag	
• Yes	+	line	valid:	hit	
• Locate	data	star9ng	
at	offset	

EXAMPLE: DIRECT MAPPED CACHE (E = 1)

S	=	2s	sets	

Direct	mapped:	One	line	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	

find	set	

EXAMPLE: DIRECT MAPPED CACHE (E = 1)

Direct	mapped:	One	line	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	

match:	assume	yes	=	hit	valid?			+	

block	offset	

tag	

EXAMPLE: DIRECT MAPPED CACHE (E = 1)

Direct	mapped:	One	line	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	

match:	assume	yes	=	hit	valid?			+	

int	(4	Bytes)	is	here	

block	offset	

If	tag	doesn’t	match:	old	line	is	evicted	and	replaced	

DIRECT-MAPPED CACHE SIMULATION

M=16	bytes	(4-bit	addresses),	B=2	bytes/block,		
S=4	sets,	E=1	Blocks/set	
	
	
Address	trace	(reads,	one	byte	per	read):	

	0 	[00002],		
	1 	[00012],			
	7 	[01112],			
	8 	[10002],			
	0 	[00002]	

x	
t=1	 s=2	 b=1	

xx	 x	

0	 ?	 ?	

v	 Tag	 Block	

miss	

1	 0	 M[0-1]	

hit	
miss	

1	 0	 M[6-7]	

miss	

1	 1	 M[8-9]	

miss	

1	 0	 M[0-1]	Set	0	
Set	1	
Set	2	
Set	3	

E-WAY SET ASSOCIATIVE CACHE (E = 2)
E	=	2:	Two	lines	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	short	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

find	set	

E-WAY SET ASSOCIATIVE CACHE (E = 2)

E	=	2:	Two	lines	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	short	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

compare	both	

valid?		+		 match:	yes	=	hit	

block	offset	

tag	

E-WAY SET ASSOCIATIVE CACHE (E = 2)
E	=	2:	Two	lines	per	set	
Assume:	cache	block	size	8	bytes	

t	bits	 0…01	 100	
Address	of	short	int:	

0	 1	 2	 7	tag	v	 3	 6	5	4	 0	 1	 2	 7	tag	v	 3	 6	5	4	

compare	both	

valid?		+		 match:	yes	=	hit	

block	offset	

short	int	(2	Bytes)	is	here	

No	match:		
•  One	line	in	set	is	selected	for	evicPon	and	replacement	
•  Replacement	policies:	random,	least	recently	used	(LRU),	…	

2-WAY SET ASSOCIATIVE CACHE SIMULATION

M=16	byte	addresses,	B=2	bytes/block,		
S=2	sets,	E=2	blocks/set	
	
Address	trace	(reads,	one	byte	per	read):	

	0 	[00002],		
	1 	[00012],			
	7 	[01112],			
	8 	[10002],			
	0 	[00002]	

xx	
t=2	 s=1	 b=1	

x	 x	

0	 ?	 ?	
v	 Tag	 Block	

0	

0	
0	

miss	

1	 00	 M[0-1]	

hit	
miss	

1	 01	 M[6-7]	

miss	

1	 10	 M[8-9]	

hit	

Set	0	

Set	1	

WHAT ABOUT WRITES?

¢  Mul$ple	copies	of	data	exist:	
!  L1,	L2,	L3,	Main	Memory,	Disk	

¢  What	to	do	on	a	write-hit?	
!  Write-through	(write	immediately	to	memory)	
!  Write-back	(defer	write	to	memory	unAl	replacement	of	line)	

!  Need	a	dirty	bit	(line	different	from	memory	or	not)	

¢  What	to	do	on	a	write-miss?	
!  Write-allocate	(load	into	cache,	update	line	in	cache)	

!  Good	if	more	writes	to	the	locaAon	follow	

!  No-write-allocate	(writes	straight	to	memory,	does	not	load	into	cache)	

¢  Typical	
!  Write-through	+	No-write-allocate	
!  Write-back	+	Write-allocate	

	

INTEL CORE I7 CACHE HIERARCHY

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1	i-cache	and	d-cache:	
32	KB,		8-way,		
Access:	4	cycles	

	
L2	unified	cache:	

	256	KB,	8-way,		
Access:	10	cycles	
	

L3	unified	cache:	
8	MB,	16-way,	
Access:	40-75	cycles	
	

Block	size:	64	bytes	for	
all	caches.		

WCPKNEEL

CACHE PERFORMANCE METRICS
¢  Miss	Rate	

!  Frac%on	of	memory	references	not	found	in	cache	(misses	/	accesses)	
=	1	–	hit	rate	

!  Typical	numbers	(in	percentages):	
!  3-10%	for	L1	
!  can	be	quite	small	(e.g.,	<	1%)	for	L2,	depending	on	size,	etc.	

¢  Hit	Time	
!  Time	to	deliver	a	line	in	the	cache	to	the	processor	

!  includes	%me	to	determine	whether	the	line	is	in	the	cache	
!  Typical	numbers:	

!  4	clock	cycle	for	L1	
!  10	clock	cycles	for	L2	

¢  Miss	Penalty	
!  Addi%onal	%me	required	because	of	a	miss	

!  typically	50-200	cycles	for	main	memory	(Trend:	increasing!)	

LET’S THINK ABOUT THOSE NUMBERS

¢  Huge	difference	between	a	hit	and	a	miss	
!  Could	be	100x,	if	just	L1	and	main	memory	

¢  Would	you	believe	99%	hits	is	twice	as	good	as	97%?	
!  Consider:		

cache	hit	;me	of	1	cycle	
miss	penalty	of	100	cycles	

!  Average	access	;me:	

		97%	hits:		1	cycle	+	0.03	*	100	cycles	=	4	cycles	

		99%	hits:		1	cycle	+	0.01	*	100	cycles	=	2	cycles	
	

¢  This	is	why	“miss	rate”	is	used	instead	of	“hit	rate”	

WRITING CACHE FRIENDLY CODE

¢  Make	the	common	case	go	fast	
!  Focus	on	the	inner	loops	of	the	core	func0ons	

¢  Minimize	the	misses	in	the	inner	loops	
!  Repeated	references	to	variables	are	good	(temporal	locality)	

!  Stride-1	reference	pa>erns	are	good	(spa0al	locality)	

Key	idea:	Our	qualita;ve	no;on	of	locality	is	quan;fied	
through	our	understanding	of	cache	memories	

• CACHE MEMORY ORGANIZATION AND
OPERATION

• PERFORMANCE IMPACT OF CACHES
• THE MEMORY MOUNTAIN
• REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
• USING BLOCKING TO IMPROVE

TEMPORAL LOCALITY

CACHE MEMORY

• CACHE MEMORY ORGANIZATION AND
OPERATION

• PERFORMANCE IMPACT OF CACHES
• THE MEMORY MOUNTAIN
• REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
• USING BLOCKING TO IMPROVE

TEMPORAL LOCALITY

CACHE MEMORY

THE MEMORY MOUNTAIN

¢  Read	throughput	(read	bandwidth)	
!  Number	of	bytes	read	from	memory	per	second	(MB/s)	

	

¢  Memory	mountain:	Measured	read	throughput	as	a	
func:on	of	spa:al	and	temporal	locality.	
!  Compact	way	to	characterize	memory	system	performance.		

MEMORY MOUNTAIN TEST FUNCTION
long data[MAXELEMS]; /* Global array to traverse */ !
!
/* test - Iterate over first "elems" elements of!
 * array “data” with stride of "stride", using !
 * using 4x4 loop unrolling. !
 */ !
int test(int elems, int stride) { !
 long i, sx2=stride*2, sx3=stride*3, sx4=stride*4; !
 long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0; !
 long length = elems, limit = length - sx4; !
!
 /* Combine 4 elements at a time */!
 for (i = 0; i < limit; i += sx4) { !
 acc0 = acc0 + data[i]; !
 acc1 = acc1 + data[i+stride]; !
 acc2 = acc2 + data[i+sx2]; !
 acc3 = acc3 + data[i+sx3]; !
 } !
!
 /* Finish any remaining elements */!
 for (; i < length; i++) { !
 acc0 = acc0 + data[i]; !
 } !
 return ((acc0 + acc1) + (acc2 + acc3)); !
} !

Call	test()	with	many	
combina/ons	of	elems		
and	stride.

For each elems
and stride:

1. Call test()
once to warm up
the caches.

2. Call test()
again and measure
the read
throughput(MB/s)

THE MEMORY MOUNTAIN

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size (bytes)

R
ea

d
th

ro
ug

hp
ut

 (M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

• CACHE MEMORY ORGANIZATION AND
OPERATION

• PERFORMANCE IMPACT OF CACHES
• THE MEMORY MOUNTAIN
• REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
• USING BLOCKING TO IMPROVE

TEMPORAL LOCALITY

CACHE MEMORY

MATRIX MULTIPLICATION EXAMPLE

¢  Descrip(on:	
!  Mul$ply	N	x	N	matrices	

!  Matrix	elements	are	
doubles	(8	bytes)	

!  O(N3)	total	opera$ons	

!  N	reads	per	source	
element	

!  N	values	summed	per	
desnaon	

!  but	may	be	able	to	
hold	in	register	

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

Variable sum
held in register

matmult/mm.c

MISS RATE ANALYSIS FOR MATRIX MULTIPLY

¢  Assume:	
!  Block	size	=	32B	(big	enough	for	four	doubles)	
!  Matrix	dimension	(N)	is	very	large	

!  Approximate	1/N	as	0.0	

!  Cache	is	not	even	big	enough	to	hold	mulGple	rows	

¢  Analysis	Method:	
!  Look	at	access	paJern	of	inner	loop	

A

k

i

B

k

j

C

i

j

= x

LAYOUT OF C ARRAYS IN MEMORY (REVIEW)

¢  C	arrays	allocated	in	row-major	order	
!  each	row	in	con+guous	memory	loca+ons	

¢  Stepping	through	columns	in	one	row:	
!  for (i = 0; i < N; i++)

sum += a[0][i];
!  accesses	successive	elements	
!  if	block	size	(B)	>	sizeof(aij)	bytes,	exploit	spa+al	locality	

!  miss	rate	=	sizeof(aij)	/	B	

¢  Stepping	through	rows	in	one	column:	
!  for (i = 0; i < n; i++)

sum += a[i][0];
!  accesses	distant	elements	
!  no	spa+al	locality!	

!  miss	rate	=	1	(i.e.	100%)	

MATRIX MULTIPLICATION (IJK)

/* ijk */
for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

A	 B	 C	

(i,*)	

(*,j)	
(i,j)	

Inner	loop:	

Column-	
wise	

Row-wise	 Fixed	

Misses	per	inner	loop	itera?on:	
	 	A 	B 	C	
	 	0.25 	1.0 	0.0	

matmult/mm.c

MATRIX MULTIPLICATION (JIK)

/* jik */
for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum
 }
}

A	 B	 C	

(i,*)	

(*,j)	
(i,j)	

Inner	loop:	

Row-wise	 Column-	
wise	

Fixed	

Misses	per	inner	loop	itera?on:	
	 	A 	B 	C	
	 	0.25 	1.0 	0.0	

matmult/mm.c

MATRIX MULTIPLICATION (KIJ)

/* kij */
for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A	 B	 C	

(i,*)	
(i,k)	 (k,*)	

Inner	loop:	

Row-wise	 Row-wise	Fixed	

Misses	per	inner	loop	itera=on:	
	 	A 	B 	C	
	 	0.0 	0.25 	0.25	

matmult/mm.c

MATRIX MULTIPLICATION (IKJ)

/* ikj */
for (i=0; i<n; i++) {
 for (k=0; k<n; k++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

A	 B	 C	

(i,*)	
(i,k)	 (k,*)	

Inner	loop:	

Row-wise	 Row-wise	Fixed	

Misses	per	inner	loop	itera=on:	
	 	A 	B 	C	
	 	0.0 	0.25 	0.25	

matmult/mm.c

MATRIX MULTIPLICATION (JKI)

/* jki */
for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A	 B	 C	

(*,j)	
(k,j)	

Inner	loop:	

(*,k)	

Column-	
wise	

Column-	
wise	

Fixed	

Misses	per	inner	loop	itera?on:	
	 	A 	B 	C	
	 	1.0 	0.0 	1.0	

matmult/mm.c

MATRIX MULTIPLICATION (KJI)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

A	 B	 C	

(*,j)	
(k,j)	

Inner	loop:	

(*,k)	

Fixed	Column-	
wise	

Column-	
wise	

Misses	per	inner	loop	itera?on:	
	 	A 	B 	C	
	 	1.0 	0.0 	1.0	

matmult/mm.c

SUMMARY OF MATRIX MULTIPLICATION

ijk	(&	jik):		
• 	2	loads,	0	stores	
• 	misses/iter	=	1.25	

kij	(&	ikj):		
• 	2	loads,	1	store	
• 	misses/iter	=	0.5	

jki	(&	kji):		
• 	2	loads,	1	store	
• 	misses/iter	=	2.0	

for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 sum = 0.0;
 for (k=0; k<n; k++)
 sum += a[i][k] * b[k][j];
 c[i][j] = sum;
 }
}

for (k=0; k<n; k++) {
 for (i=0; i<n; i++) {
 r = a[i][k];
 for (j=0; j<n; j++)
 c[i][j] += r * b[k][j];
 }
}

for (j=0; j<n; j++) {
 for (k=0; k<n; k++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

CORE I7 MATRIX MULTIPLY PERFORMANCE

1

10

100

50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
yc

le
s

pe
r

in
ne

r
lo

op
 it

er
at

io
n

Array size (n)

jki

kji

ijk

jik

kij

ikj

ijk	/	jik	

jki	/	kji	

kij	/	ikj	

• CACHE MEMORY ORGANIZATION AND
OPERATION

• PERFORMANCE IMPACT OF CACHES
• THE MEMORY MOUNTAIN
• REARRANGING LOOPS TO IMPROVE

SPATIAL LOCALITY
• USING BLOCKING TO IMPROVE

TEMPORAL LOCALITY

CACHE MEMORY

EXAMPLE: MATRIX MULTIPLICATION

a b

i	

j	

*	
c

=	

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k] * b[k*n + j];
}

CACHE MISS ANALYSIS

¢  Assume:		
!  Cache	block	=	8	doubles	
!  Cache	size	C	<<	n	(much	smaller	than	n)	

!  Three	blocks							fit	into	cache:	3B2	<	C	

¢  First	(block)	itera4on:	
!  B2/8	misses	for	each	block	

!  2n/B	*	B2/8	=	nB/4	
(omiCng	matrix	c)	

!  AGerwards	in	cache	
(schemaIc)	

*	=	

*	=	

Block	size	B	x	B	

n/B	blocks	

CACHE MISS ANALYSIS

¢  Assume:		
!  Cache	block	=	8	doubles	
!  Cache	size	C	<<	n	(much	smaller	than	n)	

!  Three	blocks							fit	into	cache:	3B2	<	C	

¢  Second	(block)	itera6on:	
!  Same	as	first	itera@on	

!  2n/B	*	B2/8	=	nB/4	

	

¢  Total	misses:	
!  nB/4	*	(n/B)2	=	n3/(4B)	

*	=	

Block	size	B	x	B	

n/B	blocks	

BLOCKING SUMMARY

¢  No	blocking:	(9/8)	*	n3	

¢  Blocking:	1/(4B)	*	n3	

¢  Suggest	largest	possible	block	size	B,	but	limit	3B2	<	C!	

¢  Reason	for	dramaHc	difference:	
!  Matrix	mul+plica+on	has	inherent	temporal	locality:	

!  Input	data:	3n2,	computa+on	2n3	

!  Every	array	elements	used	O(n)	+mes!	

!  But	program	has	to	be	wriDen	properly	

CACHE SUMMARY	

¢  Cache	memories	can	have	significant	performance	impact	

¢  You	can	write	your	programs	to	exploit	this!	
!  Focus	on	the	inner	loops,	where	bulk	of	computa6ons	and	memory	

accesses	occur.		

!  Try	to	maximize	spa6al	locality	by	reading	data	objects	with	
sequen6ally	with	stride	1.	

!  Try	to	maximize	temporal	locality	by	using	a	data	object	as	oAen	as	
possible	once	it’s	read	from	memory.		

