
VIRTUAL MEMORY: CONCEPTS
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

• ADDRESS SPACES
• VM AS A TOOL FOR CACHING
• VM AS A TOOL FOR MEMORY

MANAGEMENT
• VM AS A TOOL FOR MEMORY

PROTECTION
• ADDRESS TRANSLATION

VIRTUAL MEMORY: CONCEPTS

A SYSTEM USING PHYSICAL ADDRESSING

¢  Used	in	“simple”	systems	like	embedded	microcontrollers	in	
devices	like	cars,	elevators,	and	digital	picture	frames	

0:	
1:	

M-1:	

Main	memory	

CPU	

2:	
3:	
4:	
5:	
6:	
7:	

Physical	address	
(PA)	

Data	word	

8:	 ...	

4

A SYSTEM USING VIRTUAL ADDRESSING

¢  Used	in	all	modern	servers,	laptops,	and	smart	phones	
¢  One	of	the	great	ideas	in	computer	science	

0:	
1:	

M-1:	

Main	memory	

MMU	

2:	
3:	
4:	
5:	
6:	
7:	

Physical	address	
(PA)	

Data	word	

8:	 ...	

CPU	

Virtual	address	
(VA)	

CPU	Chip	

4 4100

• Uses main memory efficiently

• Use DRAM as a cache for parts of a virtual address
space

• Simplifies memory management

• Each process gets the same uniform linear address
space

• Isolates address spaces

• One process can’t interfere with another’s memory

• User program cannot access privileged kernel
information and code

WHY VIRTUAL MEMORY (VM)?

• ADDRESS SPACES
• VM AS A TOOL FOR CACHING
• VM AS A TOOL FOR MEMORY

MANAGEMENT
• VM AS A TOOL FOR MEMORY

PROTECTION
• ADDRESS TRANSLATION

VIRTUAL MEMORY: CONCEPTS

VM AS A TOOL FOR CACHING

¢  Conceptually,	virtual	memory	is	an	array	of	N	con3guous	
bytes	stored	on	disk.		

¢  The	contents	of	the	array	on	disk	are	cached	in	physical	
memory	(DRAM	cache)	
!  These	cache	blocks	are	called	pages	(size	is	P	=	2p	bytes)	

PP	2m-p-1	

Physical	memory	

Empty	

Empty	

Uncached	

VP	0	
VP	1	

VP	2n-p-1	

Virtual	memory	

Unallocated	

Cached	

Uncached	

Unallocated	

Cached	

Uncached	

PP	0	
PP	1	

Empty	
Cached	

0	

N-1	

M-1	

0	

Virtual	pages	(VPs)		
stored	on	disk	

Physical	pages	(PPs)		
cached	in	DRAM	

DRAM CACHE ORGANIZATION

• DRAM cache organization driven by the enormous miss
penalty

• DRAM is about 10x slower than SRAM

• Disk is about 10,000x slower than DRAM

• Consequences

• Large page (block) size:

• typically 4 KB, sometimes 4 MB

• Fully associative

• Any VP can be placed in any PP

• Requires a “large” mapping function – different from
cache memories

• Highly sophisticated, expensive replacement algorithms

• Too complicated and open-ended to be implemented in
hardware

• Write-back rather than write-through

ENABLING DATA STRUCTURE: PAGE TABLE

¢  A	page	table	is	an	array	of	page	table	entries	(PTEs)	that	
maps	virtual	pages	to	physical	pages.		
!  Per-process	kernel	data	structure	in	DRAM	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	4	

Virtual	memory	
(disk)	

Valid	
0	
1	

0	
1	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

PAGE HIT

¢  Page	hit:	reference	to	VM	word	that	is	in	physical	memory	
(DRAM	cache	hit)	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	4	

Virtual	memory	
(disk)	

Valid	
0	
1	

0	
1	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

PAGE FAULT

¢  Page	fault:	reference	to	VM	word	that	is	not	in	physical	
memory	(DRAM	cache	miss)	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	4	

Virtual	memory	
(disk)	

Valid	
0	
1	

0	
1	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

HANDLING PAGE FAULT

¢  Page	miss	causes	page	fault	(an	excep2on)	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	4	

Virtual	memory	
(disk)	

Valid	
0	
1	

0	
1	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

HANDLING PAGE FAULT
¢  Page	miss	causes	page	fault	(an	excep2on)	

¢  Page	fault	handler	selects	a	vic2m	to	be	evicted	(here	VP	4)	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	4	

Virtual	memory	
(disk)	

Valid	
0	
1	

0	
1	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

HANDLING PAGE FAULT

¢  Page	miss	causes	page	fault	(an	excep2on)	

¢  Page	fault	handler	selects	a	vic2m	to	be	evicted	(here	VP	4)	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	3	

Virtual	memory	
(disk)	

Valid	
0	
1	

1	
0	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

HANDLING PAGE FAULT
¢  Page	miss	causes	page	fault	(an	excep2on)	

¢  Page	fault	handler	selects	a	vic2m	to	be	evicted	(here	VP	4)	
¢  Offending	instruc2on	is	restarted:	page	hit!	

null	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	3	

Virtual	memory	
(disk)	

Valid	
0	
1	

1	
0	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

Virtual	address	

Key	point:	WaiIng	unIl	the	miss	to	copy	the	page	to	
DRAM	is	known	as	demand	paging	

ALLOCATING PAGES
¢  Alloca&ng	a	new	page	(VP	5)	of	virtual	memory.	

null	

Memory	resident	
page	table	
(DRAM)	

Physical	memory	
(DRAM)	

VP	7	
VP	3	

Virtual	memory	
(disk)	

Valid	
0	
1	

1	
0	
0	

1	
0	

1	

Physical	page	
number	or		
disk	address	

PTE	0	

PTE	7	

PP	0	
VP	2	
VP	1	

PP	3	

VP	1	

VP	2	

VP	4	

VP	6	

VP	7	

VP	3	

VP	5	

LOCALITY TO THE RESCUE AGAIN!

• Virtual memory seems terribly inefficient, but it works
because of locality.

• At any point in time, programs tend to access a set of active
virtual pages called the working set

• Programs with better temporal locality will have smaller
working sets

• If (working set size < main memory size)

• Good performance for one process after compulsory misses

• If (SUM(working set sizes) > main memory size)

• Thrashing: Performance meltdown where pages are swapped
(copied) in and out continuously

WATCH VIRTUAL MEMORY IN TOP

WATCH VIRTUAL MEMORY IN TOP

