
DYNAMIC MEMORY ALLOCATION: 
BASIC CONCEPTS
CS 045

Computer Organization and
Architecture

Prof. Donald J. Patterson
Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

• BASIC CONCEPTS

• IMPLICIT FREE LISTS

DYNAMIC MEMORY ALLOCATION: BASIC

DYNAMIC MEMORY ALLOCATION

¢  Programmers	use	
dynamic	memory	
allocators	(such	as	
malloc)	to	acquire	VM	
at	run	5me.		
!  For	data	structures	whose	

size	is	only	known	at	
run4me.	

¢  Dynamic	memory	
allocators	manage	an	
area	of	process	virtual	
memory	known	as	the	
heap.		

Heap	(via	malloc)	

Program	text	(.text)	

Ini5alized	data	(.data)	

Unini5alized	data	(.bss)	

User	stack	

0	

Top	of	heap	
	(brk ptr)	

Applica5on	

Dynamic	Memory	Allocator	

Heap	

DYNAMIC MEMORY ALLOCATION

¢  Allocator	maintains	heap	as	collec0on	of	variable	sized	
blocks,	which	are	either	allocated	or	free	

¢  Types	of	allocators	
!  Explicit	allocator:		applica&on	allocates	and	frees	space		

!  E.g.,		malloc	and	free	in	C	
!  Implicit	allocator:	applica&on	allocates,	but	does	not	free	space	

!  E.g.	garbage	collec&on	in	Java,	ML,	and	Lisp	

¢  Will	discuss	simple	explicit	memory	alloca0on	today	

THE “MALLOC” PACKAGE
#include <stdlib.h>

void *malloc(size_t size)
!  Successful:	

!  Returns	a	pointer	to	a	memory	block	of	at	least	size	bytes	
aligned	to	an	8-byte	(x86)	or		16-byte	(x86-64)	boundary	

!  If	size == 0,	returns	NULL	
!  Unsuccessful:	returns	NULL	(0)	and	sets	errno

void free(void *p)
!  Returns	the	block	pointed	at	by	p	to	pool	of	available	memory	

!  p	must	come	from	a	previous	call	to	malloc or	realloc

Other	func+ons	

!  calloc:	Version	of	malloc	that	iniIalizes	allocated	block	to	zero.		
!  realloc:	Changes	the	size	of	a	previously	allocated	block.	
!  sbrk:	Used	internally	by	allocators	to	grow	or	shrink	the	heap	

EXAMPLE OF MALLOC USAGE
#include <stdio.h> !
#include <stdlib.h> !
!
void foo(int n) { !
 int i, *p; !
!
 /* Allocate a block of n ints */!
 p = (int *) malloc(n * sizeof(int)); !
 if (p == NULL) { !
 perror("malloc"); !
 exit(0); !
 } !
!
 /* Initialize allocated block */!
 for (i=0; i<n; i++) !

p[i] = i; !
!
!
 /* Return allocated block to the heap */!
 free(p); !
} !

 LECTURE ASSUMPTIONS

¢  Memory	is	word	addressed.	
¢  Words	are	int-sized.	

Allocated	block	
(4	words)	

Free	block	
(3	words)	 Free	word	

Allocated	word	

ALLOCATION EXAMPLE

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

CONSTRAINTS

¢  Applica'ons	
!  Can	issue	arbitrary	sequence	of	malloc	and	free	requests	
!  free	request	must	be	to	a	malloc’d		block	

¢  Allocators	
!  Can’t	control	number	or	size	of	allocated	blocks	

!  Must	respond	immediately	to	malloc	requests	
!  i.e.,	can’t	reorder	or	buffer	requests	

!  Must	allocate	blocks	from	free	memory	

!  i.e.,	can	only	place	allocated	blocks	in	free	memory	
!  Must	align	blocks	so	they	sa>sfy	all	alignment	requirements	

!  8-byte	(x86)	or	16-byte	(x86-64)	alignment	on	Linux	boxes	

!  Can	manipulate	and	modify	only	free	memory	

!  Can’t	move	the	allocated	blocks	once	they	are	malloc’d	
!  i.e.,	compac>on	is	not	allowed	

PERFORMANCE GOAL: THROUGHPUT
¢  Given	some	sequence	of	malloc	and	free	requests:	

!  	R0,	R1,	...,	Rk,	...	,	Rn-1	

¢  Goals:	maximize	throughput	and	peak	memory	u;liza;on	
!  These	goals	are	o+en	conflic0ng	

¢  Throughput:	
!  Number	of	completed	requests	per	unit	0me	

!  Example:	

!  5,000		malloc	calls	and	5,000	free	calls	in	10	seconds		
!  Throughput	is	1,000	opera0ons/second	

PERFORMANCE GOAL: PEAK MEMORY UTIL.

¢  Given	some	sequence	of	malloc	and	free	requests:	
!  	R0,	R1,	...,	Rk,	...	,	Rn-1	

¢  Def:	Aggregate	payload	Pk		
!  	malloc(p)	results	in	a	block	with	a	payload	of	p	bytes	
!  A4er	request	Rk	has	completed,	the	aggregate	payload	Pk		is	the	sum	of	

currently	allocated	payloads	

¢  Def:	Current	heap	size	Hk	
!  Assume	Hk	is	monotonically	nondecreasing	

!  i.e.,	heap	only	grows	when	allocator	uses	sbrk

¢  Def:	Peak	memory	u;liza;on	a<er	k+1	requests		
!  Uk	=	(maxi<=k	Pi)		/		Hk	

INTERNAL FRAGMENTATION

¢  For	a	given	block,	internal	fragmenta,on	occurs	if	payload	is	
smaller	than	block	size	

	
¢  Caused	by		

!  Overhead	of	maintaining	heap	data	structures	
!  Padding	for	alignment	purposes	
!  Explicit	policy	decisions		

(e.g.,	to	return	a	big	block	to	sa>sfy	a	small	request)	

¢  Depends	only	on	the	pa<ern	of	previous	requests	
!  Thus,	easy	to	measure	

Payload	
Internal		
fragmenta@on	

Block	

Internal		
fragmenta@on	

EXTERNAL FRAGMENTATION

¢  Occurs	when	there	is	enough	aggregate	heap	memory,	
but	no	single	free	block	is	large	enough	

¢  Depends	on	the	pa:ern	of	future	requests	
!  Thus,	difficult	to	measure	

	

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops!	(what	would	happen	now?)	

IMPLEMENTATION ISSUES

¢  How	do	we	know	how	much	memory	to	free	given	just	a	
pointer?	

¢  How	do	we	keep	track	of	the	free	blocks?	

¢  What	do	we	do	with	the	extra	space	when	alloca=ng	a	
structure	that	is	smaller	than	the	free	block	it	is	placed	in?	

¢  How	do	we	pick	a	block	to	use	for	alloca=on	--	many	
might	fit?	

¢  How	do	we	reinsert	freed	block?	

KNOWING HOW MUCH TO FREE
¢  Standard	method	

!  Keep	the	length	of	a	block	in	the	word	preceding	the	block.	
!  This	word	is	o7en	called	the	header	field	or	header	

!  Requires	an	extra	word	for	every	allocated	block	

p0 = malloc(4)

p0

free(p0)

block	size	 payload	

5	

KEEPING TRACK OF FREE BLOCKS

¢  Method	1:	Implicit	list	using	length—links	all	blocks	

¢  Method	2:	Explicit	list	among	the	free	blocks	using	pointers	

	
¢  Method	3:	Segregated	free	list	

!  Different	free	lists	for	different	size	classes	

¢  Method	4:	Blocks	sorted	by	size	
!  Can	use	a	balanced	tree	(e.g.	Red-Black	tree)	with	pointers	within	each	

free	block,	and	the	length	used	as	a	key	

5 4	 2	6	

5 4	 2	6	

• BASIC CONCEPTS

• IMPLICIT FREE LISTS

DYNAMIC MEMORY ALLOCATION: BASIC

METHOD 1: IMPLICIT LIST
¢  For	each	block	we	need	both	size	and	alloca3on	status	

!  Could	store	this	informa1on	in	two	words:	wasteful!	

¢  Standard	trick	
!  If	blocks	are	aligned,	some	low-order	address	bits	are	always	0	
!  Instead	of	storing	an	always-0	bit,	use	it	as	a	allocated/free	flag	
!  When	reading	size	word,	must	mask	out	this	bit	

Size	

1	word	

Format	of	
allocated	and	
free	blocks	

Payload	

a	=	1:	Allocated	block			
a	=	0:	Free	block	
	
Size:	block	size	
	
Payload:	applica3on	data	
(allocated	blocks	only)	
	

a	

Op3onal	
padding	

DETAILED IMPLICIT FREE LIST EXAMPLE

Start		
of		

heap	

Double-word	
aligned	

8/0	 16/1	 16/1	32/0	

Unused	

0/1	

Allocated	blocks:	shaded	
Free	blocks:	unshaded	
Headers:	labeled	with	size	in	bytes/allocated	bit	

IMPLICIT LIST: FINDING A FREE BLOCK
¢  First	fit:	

!  Search	list	from	beginning,	choose	first	free	block	that	fits:	
	
	
	
	
	
!  Can	take	linear	7me	in	total	number	of	blocks	(allocated	and	free)	
!  In	prac7ce	it	can	cause	“splinters”	at	beginning	of	list	

¢  Next	fit:	
!  Like	first	fit,	but	search	list	star7ng	where	previous	search	finished	
!  Should	oCen	be	faster	than	first	fit:	avoids	re-scanning	unhelpful	blocks	
!  Some	research	suggests	that	fragmenta7on	is	worse	

¢  Best	fit:	
!  Search	the	list,	choose	the	best	free	block:	fits,	with	fewest	bytes	leC	over	
!  Keeps	fragments	small—usually	improves	memory	u7liza7on	
!  Will	typically	run	slower	than	first	fit	

p = start;
while ((p < end) && \\ not passed end
 ((*p & 1) || \\ already allocated
 (*p <= len))) \\ too small
 p = p + (*p & -2); \\ goto next block (word addressed)

IMPLICIT LIST: ALLOCATING IN FREE BLOCK
¢  Alloca&ng	in	a	free	block:	spli%ng	

!  Since	allocated	space	might	be	smaller	than	free	space,	we	might	want	
to	split	the	block	

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4	 4	 2	6	

4	 2	4	

p	

2	4	

addblock(p, 4)

IMPLICIT LIST: FREEING A BLOCK
¢  Simplest	implementa,on:	

!  Need	only	clear	the	“allocated”	flag	
 void free_block(ptr p) { *p = *p & -2 }

!  But	can	lead	to	“false	fragmenta7on”		

	

	

	
	

	

	

	

4	 2	4	 2	4	

free(p) p

4	 4	 2	4	 2	

malloc(5) Oops!	

There is enough free space, but the allocator won’t be able to find it
	

IMPLICIT LIST: COALESCING

¢  Join	(coalesce)	with	next/previous	blocks,	if	they	are	free	
!  Coalescing	with	next	block	

	
	
	
	
!  But	how	do	we	coalesce	with	previous	block?	

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
} // not allocated

4	 2	4	 2	

free(p) p

4	 4	 2	

4	

6	 2	

logically	
gone	

IMPLICIT LIST: BIDIRECTIONAL COALESCING
¢  Boundary	tags	[Knuth73]	

!  Replicate	size/allocated	word	at	“bo;om”	(end)	of	free	blocks	
!  Allows	us	to	traverse	the	“list”	backwards,	but	requires	extra	space	
!  Important	and	general	technique!	

Size	

Format	of	
allocated	and	
free	blocks	

Payload	and	
padding	

a	=	1:	Allocated	block			
a	=	0:	Free	block	
	
Size:	Total	block	size	
	
Payload:	Applica<on	data	
(allocated	blocks	only)	
	

a	

Size	 a	Boundary	tag	
(footer)	

4	 4	 4	 4	 6	 4	6	 4	

Header	

CONSTANT TIME COALESCING

Allocated	

Allocated	

Allocated	

Free	

Free	

Allocated	

Free	

Free	

Block	being	
freed	

Case	1	 Case	2	 Case	3	 Case	4	

CONSTANT TIME COALESCING (CASE 1)

m1	 1	

m1	 1	

n	 1	

n	 1	

m2	 1	

m2	 1	

m1	 1	

m1	 1	

n	 0	

n	 0	

m2	 1	

m2	 1	

CONSTANT TIME COALESCING (CASE 2)

m1	 1	

m1	 1	

n	 1	

n	 1	

m2	 0	

m2	 0	

m1	 1	

m1	 1	

n+m2	 0	

n+m2	 0	

CONSTANT TIME COALESCING (CASE 3)

m1	 0	

m1	 0	

n	 1	

n	 1	

m2	 1	

m2	 1	

n+m1	 0	

n+m1	 0	

m2	 1	

m2	 1	

CONSTANT TIME COALESCING (CASE 4)

m1	 0	

m1	 0	

n	 1	

n	 1	

m2	 0	

m2	 0	

n+m1+m2	 0	

n+m1+m2	 0	

DISADVANTAGES OF BOUNDARY TAGS

¢  Internal	fragmenta,on	

¢  Can	it	be	op,mized?	
!  Which	blocks	need	the	footer	tag?	

!  What	does	that	mean?	

SUMMARY

SUMMARY OF KEY ALLOCATOR POLICIES

¢  Placement	policy:	
!  First-fit,	next-fit,	best-fit,	etc.	
!  Trades	off	lower	throughput	for	less	fragmenta=on 		
!  Interes'ng	observa'on:	segregated	free	lists	(next	lecture)	

approximate	a	best	fit	placement	policy	without	having	to	search	en=re	
free	list	

¢  Spli0ng	policy:	
!  When	do	we	go	ahead	and	split	free	blocks?	
!  How	much	internal	fragmenta=on	are	we	willing	to	tolerate?	

¢  Coalescing	policy:	
!  Immediate	coalescing:	coalesce	each	=me	free	is	called		
!  Deferred	coalescing:	try	to	improve	performance	of	free	by	deferring	

coalescing	un=l	needed.	Examples:	
!  Coalesce	as	you	scan	the	free	list	for	malloc	
!  Coalesce	when	the	amount	of	external	fragmenta=on	reaches	
some	threshold	

IMPLICIT LISTS: SUMMARY

¢  Implementa)on:	very	simple	
¢  Allocate	cost:		

!  linear	(me	worst	case	

¢  Free	cost:		
!  constant	(me	worst	case	
!  even	with	coalescing	

¢  Memory	usage:		
!  will	depend	on	placement	policy	
!  First-fit,	next-fit	or	best-fit	
	

¢  Not	used	in	prac)ce	for	malloc/free because	of	linear-
)me	alloca)on	
!  used	in	many	special	purpose	applica(ons	
	

¢  However,	the	concepts	of	spliAng	and	boundary	tag	
coalescing	are	general	to	all	allocators	

