LINKING
CS 045

Adapted from Bryant and O’Hallaron,
Computer Systems:
A Programmer’s Perspective, Third Edition

/* Interface declaration of sum */
int sum(int *a, int n);

/* Global variable */
int array([2] = {1, 2};

/* Implementation of main */

int main()

{
int val = sum(array, 2);
return val;

/* Implementation of sum */

int sum(int *a, int n)
{
int 1, s = 0;
for (i = 0; 1 < n; i++) {
s += a[i];
}
return 8;
}

}

main.C

sum. C

m Programs are translated and linked using a compiler driver:
" linux> gcc -0Og -0 prog main.cCc sum.cC

" linux> ./prog

maif .C SWI- c Source files
Translators Translators
(cpp, ccl, as) (cpp, ccl, as)
ma!i.n o su!n. o Separately compiled
l l relocatable object files
‘ Linker (ld) ‘

l Fully linked executable object file
PXOg (contains code and data for all functions
defined in main.c and sum. c)

m Reason 1: Modularity

" Program can be written as a collection of smaller source files,
rather than one monolithic mass.

" Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

m Reason 2: Efficiency

" Time: Separate compilation
= Change one source file, compile, and then relink.
= No need to recompile other source files.

= Space: Libraries
= Common functions can be aggregated into a single file...

= Yet executable files and running memory images contain only
code for the functions they actually use.

m Step 1: Symbol resolution

" Programs define and reference symbols (global variables and functions):
= void swap () {..} /* define symbol swap */
= swap() ; /* reference symbol swap */
= int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored in object file (by assembler) in symbol table.
= Symbol table is an array of structs
= Each entry includes name, size, and location of symbol.

= During symbol resolution step, the linker associates each symbol reference
with exactly one symbol definition.

m Step 2: Relocation

" Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to
their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

m Relocatable object file (. o file)

® Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

= Each .o fileis produced from exactly one source (. c) file

m Executable object file (a . out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

m Standard binary format for object files

m One unified format for
= Relocatable object files (. 0),
= Executable object files (a.out)
= Shared object files (. so)

m Generic name: ELF binaries

m Elf header

Word size, byte ordering, file type (.o,
exec, .so), machine type, etc.

Segment header table

Page size, virtual addresses memory segments
(sections), segment sizes.

. text section

Code

.rodata section

Read only data: jump tables, ...

.data section

Initialized global variables

.bss section

Uninitialized global variables

“Block Started by Symbol”
“Better Save Space”

Has section header but occupies no space

ELF header

Segment header table
(required for executables)

. text section

.rodata section

.data section

.bss section

.symtab section

.rel.txt section

.rel .data section

.debug section

Section header table

m .symtab section
= Symbol table ELF header

" Procedure and static variable names

:) Segment header table
= Section names and locations &

(required for executables)

m .rel.text section
= Relocation info for . text section

= Addresses of instructions that will need to be
modified in the executable

" |Instructions for modifying.

. text section

.rodata section

.data section

.bss section

m .rel.data section
= Relocation info for .data section

= Addresses of pointer data that will need to be .rel.txt section
modified in the merged executable

.symtab section

.rel .data section

m .debug section

= |nfo for symbolic debugging (gcc -g) AR STl

m Section header table Section header table
= Offsets and sizes of each section

m Global symbols
= Symbols defined by module m that can be referenced by other modules.
" E.g.:non-static Cfunctions and non-static global variables.

m External symbols

" Global symbols that are referenced by module m but defined by some
other module.

m Local symbols
"= Symbols that are defined and referenced exclusively by module m.
= E.g.: Cfunctions and global variables defined with the static attribute.
" Local linker symbols are not local program variables

5OL K -

ON

Referencing a global.... -.- that’s defined here

... that’s defined here

/* Interfack declaration of sym */
int sum(inf *a, int n);

/* Globay variable */

int array([2] = {1, 2};
/* Implementation of madn */
int main()

2);

Defining a global

/* Impl¢gmentation of sum */
int sum(int *a, int n)

{

return s;

Linker doesn’t know about i or s

Referencing a global....

Linker doesn’t know about val

#include <stdio.h>

int demo()

{
static int x
X++;
return Xx;

}

0;

/* Implementation of main */

int main()

{
printf ("Demo
printf("Demo
printf ("Demo
printf("Demo
return 0;

}

Demo
Demo
Demo
Demo

returns
returns
returns
returns

returns
returns
returns
returns

$d\n"
$d\n"
$d\n"
$d\n"

B W N =

,demo (
,demo (
,demo (
,demo (

N N N N
N N N N
A NE NE

Static variables retain
their value

They are not stored on
the stack

They are like global
variables

M RB(]

m Local non-static C variables vs. local static C variables
"= |ocal non-static C variables: stored on the stack

" |ocal static C variables: stored in either .bss, or .data

int f()

{ .
static
return

}

int g()

{ .
static
return

¥

int Xx
X,

int Xx
X,

Compiler allocates space in .data for
each definition of x

Creates local symbols in the symbol
table with unigue names, e.g., x.1 and
x.2.

HOW LINKER RESOLVES DUPLICATE SYMBOL

m Program symbols are either strong or weak
= Strong: procedures and initialized globals
" Weak: uninitialized globals

pl.c p2.c
strong * int foo=5; int foo; | weak
strong > P1() { p2() { |* strong
} }

m Rule 1: Multiple strong symbols are not allowed
® Each item can be defined only once

® Otherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbols,
choose the strong symbol
= References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary
one
= Can override this with gcc —fno-common

'\

foo.cC

bar.c

int x;

pl() {}

pl() {}

int x;

pl() {}

int x;

p2() {}

int x;
int y;
pl() {}

double x;

p2() {}

int x=7;
int y=5;
pl() {}

double x;

p2() {}

int x=7;

pl() {}

int x;

p2() {}

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

Writes to x in p2 might overwrite y!
Evil!

Writes to x in p2 will overwrite y!
Nasty!

References to x will refer to the same initialized
variable.

Relocatable Object Files

System code

System data

main.o

main ()

int array[2]={1,2}

sSum.o

sum ()

.text
.data

.text
.data

.text

Headers

System code

main ()

swap ()

More system code

Executable Object File

> . text

System data

int array[2]={1,2}

.symtab
.debug

.data

int array[2] = {1, 2};

int main()

{
int val = sum(array, 2);
return val;

} main.c

0000000000000000 <main>:

0: 48 83 ec 08 sub $0x8,%rsp
4: be 02 00 00 00 mov $0x2,%esi
9: bf 00 00 00 00 mov $0x0,%ed1 # %edi = &array

a: R _X86_64 32 array # Relocation entry
e: e8 00 00 00 00 callqg 13 <main+0x13> # sum()

f: R_X86_64 PC32 sum-0x4 # Relocation entry
13: 48 83 c4 08 add $0x8,%rsp
17: c3 retq

main.o

Source: objdump -r -d main.o

00000000004004d0 <main>:

4004d0: 48 83 ec
4004d4: be 02 00
4004d9: bf 18 10
4004de: e8 05 00
4004e3: 48 83 c4
4004e7 : c3
00000000004004e8 <sum>:

4004e8: h8 00 00
4004ed: ba 00 00
4004f2: eb 09
400414 : 48 63 ca
400417 : 03 04 8f
4004fa: 83 c2 01
4004fd: 39 f2
4004ff: 7c¢ f3
400501: f3 c3

08
00
60
00

08

00
00

00
00
00

00
00

sub
mov
mov
callqg
add
retq

$0x8,%rsp
$0x2,%es1
$0x601018,%edi # %edi
4004e8 <sum> # sum()

$0x8,%rsp

mov $0x0,%eax

mov $0x0, %edx

jmp 4004fd <sum+0x15>
movslqg %edx,%rcx

add %rdi,%srcx,4),%eax
add $0x1, %edx

cmp %esi,%edx

jl 4004f4 <sum+0xc>
repz retq

= &array

Using PC-relative addressing for sum(): 0x4004e8 = 0x4004e3 + 0x5

Source:

objdump -dx prog

AL
AT
ainins

WESTMONT

JIMF

