
ACADEMIC PUBLICATIONS C.V. (PDF) PH.D. GRIND SOFTWARE ARTICLES

What is Computer Science? Efficiently
Implementing Automated Abstractions
February 2010 (Ph.D. student)

Summary

This article elaborates on my four-word summary of the

essence of Computer Science as a field of study: Efficiently
Implementing Automated Abstractions. I also provide

one-, two-, and three-word summaries for those who want

to be more concise.

INTRODUCTION

Many people who study Computer Science (myself included) have

trouble explaining what exactly it is to people who are not in the

field. This article is my attempt at defining what Computer
Science is as a field of study, in four words or less.

Apologies in advance if this article sounds overly fluffy or

bullshitty; I don't often get to pontificate about such lofty abstract

ideas. Adults who have real jobs probably think that since I'm

working towards my Ph.D. in Computer Science, I must spend all

day sipping lattes and engaging in philosophical discussions with

my colleagues in some Ivory Tower; in reality, I spend most of my

time 'in the trenches' hacking on research prototypes and

debugging memory errors in C code. So here comes my rare

attempt at being 'scholarly' ... enjoy!

ABSTRACTION

(ONE-WORD SUMMARY)

It's nearly impossible to summarize an entire field in one word,

but if I had to choose just one for Computer Science, it would be

abstraction. At its core, Computer Science is about building

clean abstract models (abstractions) of messy, noisy, real-world

Philip Guo

Assistant Professor of
Cognitive Science

UC San Diego

Publications
Google Scholar
Curriculum Vitae

Twitter: @pgbovine 
philip@pgbovine.net 
read before cold­emailing

Want to join my lab?

Office Hours 

UCSD Cognitive Science
9500 Gilman Drive

La Jolla, CA 92093­0515

Newest  

PG Vlog #11 ­ Playing Opens the
Door to Serendipity

PG Vlog #10 ­ Managing is
Nudging

PG Vlog #9 ­ For Aspiring Creators,
Content Means Everything

PG Vlog: why I'm trying out videos

PG Vlog #8 ­ Starting Creative
Projects in Private

PG Podcast ­ Episode 20 ­ Cat
Hicks on ethical data science

PG Podcast ­ Episode 19 ­ Jean
Yang on time and serendipity
management



objects or phenomena. As Computer Scientists, we must choose

what to include in our models and what to discard, to determine

what is the minimum amount necessary to model in order to

solve our given problem to the required degree of accuracy.

Computer Science is a means of solving real-world problems, and

it all starts with abstraction. For example, the first step in building

an automated movie recommendation system (like what Netflix

does) is to choose what features of movie watcher behavior to

model, to abstract a movie watcher to a set of relevant metrics

(e.g., number of times he's rented Arnold Schwarzenegger films).

Ideally, we would like to fully model the human brain so that we

can make near-perfect recommendations, but that's obviously

intractable (for now, at least).

AUTOMATING ABSTRACTIONS

(TWO-WORD SUMMARY)

The word I would immediately add to my summary is

automating. Related fields like mathematics and the natural

sciences also involve building abstractions (e.g., of geometric

shapes or atomic structures), but their models only serve to

describe and explain, not to evoke actions. What makes Computer

Science different is that it deals with putting the models into

action to solve problems. This involves creating algorithms, which

are step-by-step instructions for performing actions on and with

the data that we have modeled.

In our movie recommendation example, once we have formed the

proper abstractions (models), then we need to figure out how to

act on them in order to make recommendations. One very simple

algorithm would be to simply recommend more Arnold movies to

people who have rented Arnold movies in the past, or perhaps to

throw some Stallone movies into the mix.

I've purposely not chosen automating as my first word, since

automation existed far before the invention of Computer Science.

People have thought about automation for thousands of years,

starting with building tools to automate aspects of farming and

culminating with the assembly lines of the Industrial Revolution.

Instructions for assembling cotton gins or guns or automobiles

are definitely algorithms for automating tasks, but they deal with

the world of concrete, real-world objects; no abstraction is

needed.

PG Podcast ­ Episode 18 ­ Michael

Kennedy on podcasting as a career

A Five­Minute Guide to Ph.D.

Program Applications

PG Podcast ­ Episode 17 ­ Tess

Rinearson on dropping out of

college and into the tech industry

[see all articles]

Categories

research (40)

jobs (40)

assistant professor life (38)

programming (37)

software (35)

Ph.D. student life (32)

productivity (31)

computing education (26)

personal (26)

social observations (26)

PG Podcast (22)

undergrad education (20)

human­computer interaction (14)

talks (14)

CACM blog (13)

On the Move memoir (12)

kids (12)

PG Vlog (12)

guest article (11)

photography (11)

Asian parents (11)

research advising (10)

faculty job applications (9)

teaching (9)

writing (8)

email (8)

screencast video (7)

high school (7)



In contrast, abstraction is essential for solving problems like
effectively finding information online, predicting stock prices,
optimizing flight plans to save gasoline, or automatically detecting
credit card fraud; that's part of the reason why these are
Computer Science problems (rather than, say, industrial or
process engineering problems).

IMPLEMENTING AUTOMATED ABSTRACTIONS
(THREE-WORD SUMMARY)

Notice that I haven't mentioned computers at all so far; that's
because, at its core, Computer Science doesn't involve computers
at all. You could imagine creating the requisite models and
algorithms, then handing them off to a team of people to execute
in an assembly line filled with pencil and paper. That would still
be doing Computer Science per se, but it would be too slow to
solve any practical problems.

Computers are electronic devices that are engineered to be
amazingly fast at executing algorithms on data, so to solve any
real Computer Science problems, we need to implement our
models and algorithms (the 'automated abstractions') in the form
of code (instructions) that the computer can understand.

This is where the rubber hits the road. So far we've been dealing in
some intangible fairy world of abstract models and algorithms.
We might jot our notes down on paper, formalize them and do
mathematical proofs about their properties, or write scholarly
papers trying to persuade others as to why our chosen models and
algorithms ought to work well. However, the best proof that our
proposed solution truly works comes from actually
implementing it in the form of a computer program, executing
it on a computer, and using the output to affect the real world. No
matter whether the output is shown to a person (e.g., Google
search results) or fed into a mechanical device (e.g., airplane
autopilot system), it has a direct, tangible effect on the world. If an
implementation actually works, then nobody can argue that it
doesn't work (this statement sounds silly, but you really can't
achieve that high degree of certainty that you're undeniably
correct in most other life endeavours).

The beauty of having a properly-functioning (correct)
implementation is that it cuts away all the subjective
bullshit. As a user, the only way that Netflix can convince you
that its recommendation system works is if it actually provides

undergrad research (6)

grad school applications (6)



good recommendations for you; without a working

implementation, no amount of persuasive rhetoric from the CEO

or even mathematical proofs from resident theorists (which might

contain logical flaws or unrealistic assumptions) can convince you

otherwise.

EFFICIENTLY IMPLEMENTING AUTOMATED

ABSTRACTIONS

(FOUR-WORD SUMMARY)

The final word I'm piling onto the summary is efficiently. First

and foremost, we must ensure correctness in our implementation;

it doesn't matter how fast your code runs if it doesn't properly

solve the problem. Next, we can think about efficiency, designing

our data models and algorithms to run quickly while taking up the

minimal amount of resources (e.g., memory, hard disk space,

electricity). Computer Science researchers have developed many

theoretical and empirical techniques to make implementations of

algorithms more efficient.

So how efficient is 'efficient enough'? Well, it depends on your

particular application. If your movie recommendation algorithm

must run for 1 year before giving results to the user, then it's

useless. (Actually, if you ran today's Netflix or Google algorithms

on computers built 20 years ago, they would probably actually

take a year to run!) But the difference between it taking 0.5

seconds to run and 0.005 seconds (a 100X factor) might not

matter to most users.

RECAP

Again, here are the 4 words I would use when describing the

essence of Computer Science, in order of significance:

1. Abstraction

2. Automating Abstractions

3. Implementing Automated Abstractions

4. Efficiently Implementing Automated Abstractions

Note that I purposely didn't use either the word 'computer' or

'science' in my summaries, since I don't think they properly

embody the essence of the field. I'll finish with my thoughts on

those two words, though:



Computers are merely a tool for implementing Computer

Science ideas. Edsger Dijkstra, a pioneer of the field, once said,

"Computer Science is no more about computers than astronomy
is about telescopes." That said, though, since computers are the

link between Computer Science and the real world, lots of

Computer Science research is actually geared towards improving

the capabilities of computers! Researchers and engineers write

computer programs to help them build more powerful next-

generation computers (with faster processors and more storage);

this creates a wonderful positive feedback loop where the next

generation has more powerful computers and so are able to

implement even more ambitious Computer Science ideas,

including ideas to improve future generations of computers. Also,

lots of Computer Science research is geared towards helping

people interact more productively with computers; if computers

didn't exist, then there would be no research in sub-fields like

programming languages, operating systems, or human-computer

interaction.

And as for science, I believe that one must constantly use the

scientific method of hypothesis creation, testing, and refinement

when designing, implementing, debugging, and tweaking

implementations of Computer Science ideas. Nobody designs or

implements an idea correctly on the first attempt, so that's why a

methodical, empirically-driven scientific mindset is required to

create correct and efficient implementations of Computer Science

ideas.

ACKNOWLEDGMENTS

Many of the ideas in this article were inspired by the final lecture

of the MIT 6.00 class given by Professor John Guttag, entitled

What do computer scientists do?.

Created: 2010­02­04 
Last modified: 2010­03­06

Related pages tagged as computing education:

PG Podcast ­ Episode 13 ­ Lindsey Kuper on a new kind of computing
conference
PG Podcast ­ Episode 11 ­ Brad Miller on building long­lasting software in
academia



Python Tutor: The First Three Years
Interactive Systems for Learning Programming at Scale
Learning programming at scale
My CS Education Zoo interview
My Basic Technology Stack for Teaching Web Programming
Programmers: Please don't ever say this to beginners ...
Hello World in C and Python
Python is now the most popular introductory teaching language at top U.S.
universities
Python Tutor Live
NPR Interview on Silent Technical Privilege
My book notes on Unlocking the Clubhouse
Silent Technical Privilege
Hour of Code: Observations from a Middle School Classroom
My Unexpectedly Awesome AP Computer Science Class
Hacker School Residency
Teaching Librarians Programming
Education Removes Fear: Some Examples From CS Courses
Teaching Real­World Programming
Teaching Programming To A Highly Motivated Beginner
Introductory Computer Programming Education
Why Python is a great language for teaching beginners in introductory
programming classes
Computer Science in Modern Everyday Life
Java and Software Engineering Notes

Copyright © 1997–2017 Philip Guo. All rights reserved.


