
Modeling Details of the Activity Tracker

(or how I learned to stop worrying and love the DBN)

Don Patterson

June 4, 2004

1 The Activity Graph

T1() T2() T3() T4()
Activity 1

.95 Object a

.20 Object b

.75 Object c

.75 Object d

.35 Object e
.10 Object f

.50 Object a .90 Object b
.15 Object e

.80 Object g

.10 Object h

T10() T11()
Activity 3

.95 Object n .75 Object o .50 Object p

T6() T8()
Activity 2

.50 Object i

.40 Object j
.89 Object k .72 Object l .85 Object m

.25 Object i

T7()

T5()

T9()

T12()

Figure 1: An example Activity Graph.

An Activity Graph (e.g., figure 1) is a graphical representation of the Activity Space. It shows
how activities are structured, how observations effect the belief state and exhaustively represents
the activities that the Activity Tracker believes that a user may be undertaking. It is not strictly
a graphical representation of the state transitions in the system, but it does give an intuitive
sense of how a user can move through the state space and it is sufficient to construct a complete
state transition diagram, although such a diagram would be large and marginally useful if actually
constructed.

The Activity Graph in figure 1 is interpreted as follows: there are three activities. The first activity
consists of five steps. Each Activity Node, A, has a temporal distribution associated with each of
its out-edges which is described by the function Tx(). The first activity, therefore, has a total
time distribution of

∑
1:5 Ti(). The second activity has four steps and the third activity has three

1

steps. Each activity has a node shaded dark gray which indicates the first step of the activity. The
collection of dark gray shaded nodes form a set, Âb.

There is an implicit edge from the end of every activity to the first node of every activity. This is
represented in the figure by a dashed curved line originating from a light gray shaded node. The
set of light gray shaded nodes which are the end of each activity also form a set, Âe.

Each Activity Node in the graph also has a collection of objects associated with it. For a given
node, A, the set of objects associated with that node is ÔA. These objects are the objects that are
probabilistically expected to be touched at least once by a user while at the indicated node before
proceeding to the next node in the activity. Each object is labeled with a probability of being
touched. The probabilities are independent of each other and are combined using a Naive Bayes
approximation. For example, while a user is in the first node of the first activity the probability
of completing this step of the activity after touching objects a, b, and c is P ({a, b, c} | ÔA) =
(.95)(.20)(.75) = .1425. The probability of completing this node by touching just objects a and b
is P ({a, b,¬c}|ÔA) = (.95)(.20)(1− .75) = .0475.

We address sensor errors later in this paper, but in their absence we make the assumption that
our model is correct. We don’t explicitly account for execution errors. Furthermore, our model
assumes that a user is engaged in a single activity at any given time, that the user completes
that activity before beginning a new activity and that all activities are strictly linear orderings
of Activity Nodes (although the structure of the Activity Node itself allows for some variation in
ordering of the object touches “internally”).

2 The Observables

An observation, ẑ, consists of a set of RFID tags. Observations are assumed to arrive at a regular
rate and may indicate that no tags have been touched. Each RFID tag has a one-to-one mapping
with objects in the Activity Graph, so an observation might be:

ẑ = {Object a,Object b, Object c}

A history of four observations might look like:

ẑ1:4 = {{Object a,Object b, Object c}, {Object d}, ∅, {Object e,Object f}}

3 Activity Graph as a Dynamic Bayes Net (DBN)

Before the Activity Tracker infers the current state of the system, the Activity Graph must be
compiled into a graphical model. We use a 2TBN graphical model, a subset of Dynamic Bayes
Nets which themselves are a type of Hidden Markov Model. Figure 2 shows the structure of our

2

Sensed
RFID Tags

ẑi
Sensed

RFID Tags

ẑi−1

Time Remaining
in this Activity

Node

Di−1
Time Remaining

in this Activity
Node

Di

Activity
Node

Ai−1
Activity
Node

Ai

Objects
Touched
This Time

R̂i−1

Set Of RFID
tags touched
while in this

Activity Node

Ĥi
Set Of RFID
tags touched
while in this

Activity Node

Ĥi−1

Objects
Touched at
This Time

R̂i

t − ∆t t

Figure 2: A Dynamic Bayes Net that describes the state transitions. Round nodes are continuous
random variables. Square nodes are multinomial random variables. Shaded nodes are observed
variables. Solid arrows are intra-temporal dependencies. Dashed arrows are inter-temporal depen-
dencies. Time progresses from left to right.

model. As is standard in 2TBNs, when an observation is made, the state of the system at the
previous time-step is frozen and treated as observed and the most likely state is computed over the
hidden nodes in the current time-step.

The semantics of the 2TBN clearly show how an Activity Graph can generate the appropriate
graphical model structure: the left half of the model represents the state of the system at the last
observation. The previous state is treated as observed. The right half of the model is the state
of the system at the current time step. Only the sensed RFID tags are observed in the current
observation (ẑi). We assume that observations arrive at discrete regular intervals and that the state
of the system does not change between observations.

3.1 Node Semantics

The ith state of the system is therefore, xi =
〈
Ai, Di, Ĥi, R̂i, ẑi,

〉
, and consists of the following

variables:

• A is a hidden multinomial variable which has one value for every Activity Node in the Activity
Graph. It represents the Activity Node that the user is executing.

• D is a hidden continuous variable which represents the amount of time remaining in the
current Activity Node before switching to the next activity node.

3

• Ĥ represents the cumulative history of tags actually touched while executing the current
Activity Node. It is also a multinomial variable which has one value for every member of the
power-set of tags that are in the Activity Graph. This variable only “remembers” whether or
not a tag has been touched, not how many times it has been touched.

• R̂ is similar, but represents only the set of tags presently being touched. It is a hidden variable
and is different than ẑi because of sensor error in the system which might cause the RFID
tags which are seen to be different than the tags which are actually touched. It is also a
multinomial variable which has one value for every member of the power-set of tags that are
in the Activity Graph.

• ẑ represents the set of RFID tags sensed. It is an observed multinomial variable which has
one value for every member of the power-set of tags that are in the Activity Graph.

3.2 Conditional Probability Semantics

We wish to determine the probability of being in a state given a sequence of observations. Using
the Markov assumption 1 we can describe the probability of being in a state recursively as follows:

P (xt | ẑ1:t) =
∫

P (xt | ẑt, xt−1)

Prior︷ ︸︸ ︷
P (xt−1 | ẑ1:t−1) dxt−1 (1)

P (x1 | ẑ1:1) =
∫

P (x1 | ẑ1, x0)

Prior︷ ︸︸ ︷
P (x0) dx0 (2)

3.2.1 Prior

The prior probability in Equation 1 is assumed to be known based on a recursive calculation. The
base case, which is the probability expressed in Equation 2 is the a priori belief that the user is
first observed in a given state.

In our application we assume that the first observation coincides with the user beginning an activity
sequence in the Activity Graph (i.e, executing an Activity Node in Âb). Among this subset of
Activity Nodes we have a uniform prior belief that the user is starting an activity. This corresponds
to a subset of the state space in the 2TBN. We can formally describe the prior belief in terms of
the full state space as follows:

1Our use of the variable Ĥ allows us to capture the history of RFID tags observed without requiring multiple time
step dependencies

4

P (x0 =
〈
Ax0 , Dx0 , Ĥx0 , R̂x0 , ẑx0

〉
) =



if Ax0 6∈ Âb ⇒ 0
else if Ĥx0 6= ∅ ⇒ 0
else if R̂x0 6= ∅ ⇒ 0
else if ẑx0 6= ∅ ⇒ 0
else ⇒ 1

|Âb|
TAx0

(Dx0)

(3)

Informally, this enforces that the model begins with no observed tags, an empty tag history and
a uniform distribution over which activity the user is starting, but within that activity node, the
belief is distributed according to the temporal distribution function, TAx .

The time distribution for each activity node is assumed to be normalized and therefore has the
following property:

∀Ax :
∑
D

P (D|Ax) =
∑
D

TAx(D) = 1 (4)

The total probability of all initial states is shown to sum to 1 below:

∑
r

∑
h

∑
a

∑
d

P (x0 |R̂x = r, Ĥx = h, Ax = a,Dx = d) = (5)

∑
r=∅

∑
h=∅

∑
a∈Âb

∑
d

1
|Âb|

P (d |Ax) = (6)

∑
r=∅

∑
h=∅

∑
a∈Âb

1
|Âb|

∑
d

TAx(d) = (7)

∑
r=∅

∑
h=∅

∑
a∈Âb

1
|Âb|

= (8)

∑
r=∅

∑
h=∅

1 = 1 (9)

3.3 Update Equation

By assuming independence between the current observation and the previous state given that the
current state is unknown (the v-case of d-separation), we can further simplify equation 1 as follows:

P (xt | ẑ1:t) =
∫

P (xt | ẑt)P (xt |xt−1) P (xt−1 | ẑ1:t−1)dxt−1 (10)

= P (xt | ẑt)
∫

P (xt |xt−1) P (xt−1 | ẑ1:t−1)dxt−1 (11)

=
P (ẑt |xt)P (xt)

P (ẑt)

∫
P (xt |xt−1) P (xt−1 | ẑ1:t−1)dxt−1 (12)

5

We make the assumption of a stationary model in which for any given sequence of observations the
prior distributions of xt and ẑt are constant. As such we can rewrite our equation as follows:

P (xt | ẑ1:t) ∝ P (ẑt |xt)︸ ︷︷ ︸
Sensor Model

∫
P (xt |xt−1)︸ ︷︷ ︸

State Transition Model

P (xt−1 | ẑ1:t−1)︸ ︷︷ ︸
Recursive Prior

dxt−1 (13)

Each part of 13 has a specific interpretation with a counterpart in the DBN: The sensor model
describes the probability of observing objects given sensor inaccuracies. The state transition model
is derived from the Activity Graph and describes how a user moves through the space of Activity
Nodes and the recursive prior is assumed to be known.

3.3.1 The Sensor Model Semantics

The sensor model which we use includes a model of RFID sensor measurement error, which we
assume is independent of which tag we are reading. The false positive (FP) and false negative (FN)
error rate for the RFID reader may be asymmetric:

P (ẑt |xt = {Axt , Dxt , R̂xt , Ĥxt}) (14)
= P (ẑt |R̂xt) (15)

= (1− P (FP))|ẑt∩R̂xt |︸ ︷︷ ︸
True Positive

(1− P (FN))|¬ẑt∩¬R̂xt |︸ ︷︷ ︸
True Negative

P (FP)|ẑt−R̂xt |︸ ︷︷ ︸
False Positive

P (FN)|R̂xt−ẑt|︸ ︷︷ ︸
False Negative

(16)

The step from equation 14 to equation 15 is derived from the conditional independency relations
in the 2TBN.

If there were no RFID sensor error, equation 16 would reduce to

P (ẑt |R̂xt) =
{

if ẑt = R̂xt ⇒ 1
else ⇒ 0

(17)

3.3.2 The State Transition Model

The State Transition Model term in proportionality relation 13 reflects how our model assigns belief
of a given state given the prior state. The update equation can be factored into several equations
as Figure 2 suggests:

P (xt |xt−1)
= P (Axt , Dxt , R̂xt , Ĥxt |Axt−1 , Dxt−1 , R̂xt−1 , Ĥxt−1)
= P (Axt |Axt−1 , Dxt−1)︸ ︷︷ ︸

Activity Progression

P (Dxt |Axt , Dxt−1)︸ ︷︷ ︸
Timing

P (R̂xt |Axt , Dxt , Rxt−1 ,Hxt−1)︸ ︷︷ ︸
Tag Expectation

P (Ĥxt |Dxt−1 , R̂xt , Ĥxt−1 ,)︸ ︷︷ ︸
Tag History Collection

Let’s look at the semantics of each of these pieces in turn.

6

3.3.3 Activity Progression Semantics

Activity progression is defined by the Activity Graph. If the user is executing an activity node,
when the timer becomes 0, the next node in the activity progression becomes active. The only
exception occurs at the end of an activity in which case there is a uniform probability of moving
to the beginning of any activity. In both cases the value of state variable A changes :

P (Axt |Axt−1 , Dxt−1) =



if (Dxt−1 > 0) ∧ (Axt−1 = Axt) ⇒ 1
if (Dxt−1 > 0) ∧ (Axt−1 6= Axt) ⇒ 0
if (Dxt−1 <= 0) ∧ (Axt−1 6∈ Âe) ∧ (Axt−1 � Axt) ⇒ 1
if (Dxt−1 <= 0) ∧ (Axt−1 6∈ Âe) ∧ (Axt−1 6� Axt) ⇒ 0
if (Dxt−1 <= 0) ∧ (Axt−1 ∈ Âe) ∧ (Axt ∈ Âb) ⇒ 1

|Âb|
if (Dxt−1 <= 0) ∧ (Axt−1 ∈ Âe) ∧ (Axt 6∈ Âb) ⇒ 0

(18)

3.3.4 Timing Semantics

Timing is a straightforward counter which counts down deterministically to zero. The variable Dxt

keeps track of how much longer the user will be in the current activity node. When the previous
counter is zero, the current counter is stochastically reset according to the temporal distribution
associated with the current Activity Node.

It is updated as follows:

P (Dxt |Axt , Dxt−1) =


if (Dxt−1 > 0) ∧ (Dxt = Dxt−1 −∆t) ⇒ 1
if (Dxt−1 > 0) ∧ (Dxt 6= Dxt−1 −∆t) ⇒ 0
if (Dxt−1 <= 0) ∧ (Dxt = d) ⇒ TAxt

(d)
(19)

3.3.5 Tag Expectation

Tag expectation refers to the expected belief of seeing a given set of tags.

P (R̂xt |Axt , Dxt , R̂xt−1 , Ĥxt−1) =
∏

r∈R̂xt

P ′(r |Axt , Dxt , R̂xt−1 , Ĥxt−1) (20)

=


if r ∈ R̂xt−1 ⇒ k1

if r 6∈ R̂xt−1 ∧ r 6∈ ÔAxt
⇒ k2

if r 6∈ R̂xt−1 ∧ r ∈ ÔAxt
∧ r 6∈ Ĥxt−1 ⇒ P (r |ÔAxt

)

Dxt
∆t

if r 6∈ R̂xt−1 ∧ r ∈ ÔAxt
∧ r ∈ Ĥxt−1 ⇒ k3

(21)

7

The intuition for these dependencies is that it is calculated on a tag by tag basis (equation 20),
and then the individual tag probabilities are multiplied to get the overall probability. k1 is a large
constant which is learned from the data which reflects the fact that a repeated observation from
one time step to the next is the result of holding something and shouldn’t bias one belief against
another given that they both just saw a tag. k2 is a small constant which reflects the likelihood of
actually touching something which is not a part of the current activity. If you weren’t allowed to
touch anything else while performing an activity then this would be zero. k3 is a constant learned
from data which reflects the fact that once you see a tag, seeing the tag again while in the same
activity node shouldn’t bias you any more or less against other activity nodes in which you have
already seen that object.

3.3.6 Tag History Collection

The tag history is maintained though a simple deterministic update of the tags that have been seen
and is reset when an activity node switch is observed.

P (Ĥxt |Dxt−1 , R̂xt , Ĥxt−1 ,) =


if (Dxt−1 = 0) ∧ (Ĥxt−1 = ∅) ⇒ 1
if (Dxt−1 = 0) ∧ (Ĥxt−1 6= ∅) ⇒ 0
if (Dxt−1 6= 0) ∧ (Ĥxt = Ĥxt−1 ∪ R̂xt) ⇒ 1
if (Dxt−1 6= 0) ∧ (Ĥxt 6= Ĥxt−1 ∪ R̂xt) ⇒ 0

(22)

4 Conclusion

This paper has proposed a method of constructing the structure and probability tables of a Dynamic
Bayes Net from an Activity Graph for the purpose of inferring activities from a stream of RFID
sensors.

8

