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We all “start” by learning how to code in some 
programming language.

• With a small, hypothetical, and fairly well defined problem


• Usually the code is within one module

Introduction



We then learn that the program usually does not 
work on the first try, second try ------ may be 

even 5th or 6th try!

• We learn about “testing” the program


• We learn about re-reading and re-thinking the (problem) 

requirements more carefully --- then find that we may not 

have all the answers 


• We learn about tracing and “debugging” the program  


• Then ---- somehow magically ---- we decide that it’s “good 

enough !”

Introduction
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1. Understand the problem


• Contextual Inquiry


• Study the environment in which the intervention will be 

deployed


• Requirements Engineering


• Work with the client to figure out


• Functionalities


• Non-functionalities


• performance, security, modifiability, marketability, etc

“Simple” Set of Steps



2. Perform Some Design 

• Organizing the functionalities in some sequence;


• possibly using some diagrams


• Focus on input/output ( data, formats, organization)


• Think about some constraints (non-functionalities) such as 

speed, UI looks, programming language, dependencies, etc.


• any specific algorithm and improvements on sequence of 

functionalities. 

“Simple” Set of Steps



3. Code/Implement

• Turning the design into actual code


• Depending on how much design is completed, one may either 

directly engage in conversion to code (language dependent) or 

do some more designing.


• Converting input/output to specific UI Interface or I/O format 


• Sequencing the processing in the desired order


• Ensuring and converting the processing “algorithm” 

correctly to the target language construct.


• figure out how to use language library (properly)

“Simple” Set of Steps



4. Validate/Test the program 

• check the program results (via output) with some predetermined 

set of inputs.


• The pre-determined inputs are “test cases” and requires some 

thinking.


• If the results do not match what is expected then:


• “Debug”


• Fix 


• Retest ---- revalidate


• Stop when all test cases produce the expected results.

“Simple” Set of Steps



How many test cases should we develop 
and run?



Narrative vs. Reality



• The real process is a messy mix of the idealized process


• At the end, acceptance tests are contractual obligations



• How Long (elapsed time) did it take to complete the work?


• How much effort (total person hours) is expended to do the work?


• Does the solution solve the complete problem?


• How “good” is the work – (code, design, documentation, testing, 

etc.)?

Code is “Done!”  What Else Matters? 



How “good” is the work?



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Think about it for a second, then let’s discuss missing 

requirements

Simple Problem





Specifying the problem
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• It turns out that this task is under specified


• We need to clarify


• the program requirements


• the design constraints

Decisions



Complete specification
• The program requirements


• State what the program does


• Qualify what the program does


• Design constraints


• Provide boundaries for ways in which the program can be 

created

Decisions



Requirements
• Not exactly the same as in common English


• Requirements cost money


• Many are negotiable.  Which ones?

Decisions

Good Fast Cheap

Choose 2



Requirements
• Functional Requirements


• What the program does


• Non-functional Requirements


• How the program behaves

Decisions



Requirements
• Functional Requirements


• What the program does


• “Sort a file”


• Non-functional Requirements


• How the program behaves


• Performance


• Usability


• Maintainability

Decisions



Design Constraints
• What languages can you use?


• What frameworks can you use?


• On what platforms must it run?

Decisions



Requirements vs Design Constraints
• The categories are not always clear cut


• Functional Requirements


• Non-functional Requirements


• Design Constraints


• Some requirements can be de facto design constraints

Decisions



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• What are the function requirements?


• Brainstorm some

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Function requirements:


• What is the format of the input data?


• How is the data stored?


• What is “a character”?


• What is “a line”?

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Function requirements:


• What order should the sort be?


• How should sort react to non-alphabetic characters?


• How should sort react to numbers?


• Upper-case vs lower-case

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Function requirements:


• Special cases:


• Empty file?


• Empty line?

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Non-Functional requirements:


• Performance Requirements:


• How long should it take?


• Real-time Requirements


• What about the variability in performance? Worst-

case vs. Average-case


• Modifiability in the future?

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Design Constraints


• What’s the user interface like?  GUI vs CLI? web-based?


• Typical input size?


• How much should we worry about algorithm?


• Will it fit in memory? on disk? on one rack?

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Platforms


• What OS?


• Often a business decision based on licenses, other 

systems


• The computational world is fragmented, but each new 

platform incurs additional cost

Simple Problem



Thought Experiment
• “Given a collection of lines of text stored in a file, sort them 

in alphabetical order, and write them to another file”


• Schedule


• When does it have to be delivered?


• Speed costs $$


• $$ can’t make everything possible however

Simple Problem



• 1 byte characters (UTF-8)


• Sort ascending, treating digits as characters, upper and 

lowercase differently in Unicode order


• Empty lines not special, empty files make empty files


• 1 minute to sort 100 lines of 100 characters


• no real-time requirements


• no modifiability requirements


• We should have a GUI, run on Mac, in Java


• typical input size will be 100 lines


• For Prof. Patterson: Due ASAP

Thought Experiment



When in doubt use UTF-8

Side-bar on character encoding



• 10:00 - started


• 10:15 - Eclipse crashed


• 10:30 - Decide initial design was bad


• 11:00 - laptop battery died - no charger - stop


• 13:00 - restart


• 13:21 - done debugging


• 13:36 - done writing tests


• effort ~ 1.6 person hours


• elapsed time ~ 3.5 hours

I estimated 30 minutes to do the task

Prof. Patterson Experiment



Testing
• Acceptance Tests


• High-level evaluations by a client, contractually bound


• Do a sorting walk-through of examples


• UI Tests


• Automated tests that simulate UI input


• Functional tests


• Automated tests that simulate scenarios


• JUnit tests


• Automated tests that test method and class specs

Decisions



Testing
• “Extreme Programming” methodology


• Write the tests before you write the code

Decisions



Estimating Effort (aka Project Management)
• Breaking down a problem into sub-tasks


• Estimating the time for each


• Assigning a cost to the project

Decisions



Exercise
Write a “program” in your favorite language that will accept 
numerical numbers as inputs, compute the average, and output 
the answer.


Provide an estimate within one minute:

How long (in elapsed-time) would it take you to implement this 
solution?

How much overall effort (in person-hours) will this take?


How well will your solution match the problem?

How good is your code/design/documentation/testing?


Decisions



Estimating Effort
• Did you include meal breaks, rest breaks, bathroom breaks?


• Did you break down the task?


• Did you include GUI?  Testing?  Bug fixing?

Decisions



Estimating Effort
• This is one of the toughest problems in software project 

management.


• Accurate estimates are very hard to make


• Estimates should be made by the person assigned to the 

task


• Hopefully after some reflection and data on performance.


• Pivotal Tracker

Decisions



• How long (in elapsed-time) would it take you to implement this 

solution?


• Class Answer: 10 min. (A); 15 min (B); 1 hr. (C);                       


• How much overall effort (in person-hours) will this take?


• Class Answer: 10 person min. ; 15 person min. ; 1 person 

hour; 3 person-hrs


• Will your solution match the problem?


• Class Answer:   YES!


• How “good” will your solution be?


• Class Answer:    Awesome!

Previous Class Answers



• How long do you think assignment #1 would take?


• 1 hr        ---  7 people


• 2 hrs      ---   6 people


• 3 hrs      ---   2 people


• 10 hrs    ---   3 people


• Real data from class:


• Elapsed time: range was 5 days to 46 minutes – mostly 

between 1 to 3 hours


• Effort: range was 8 person-hours to 40 person-minutes – 

mostly between  1 person-hour to 3 person-hours

Some “Previous Class” Inputs



Conventions help teams move faster
• Teams need to agree on syntax conventions and stick to 

them


• When do you use capital letters?


• How are things named?


• How are comment utilized?


• Testing before giving code to others


• Having someone else review your code before sharing

Implementation




