
DESIGN: ARCHITECTURE AND
METHODOLOGY
Software Engineering
CS 130
Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal
Jones and Bartlett Learning

DESIGN: ARCHITECTURE & METHODOLOGY
Design Topics Covered

1.  Architectural .vs. Detailed design

2.  �Common� architectural styles, tactics and
reference architectures

3.  Basic techniques for detailed design

4.  Basic issues with user-interface design

DESIGN: ARCHITECTURE & METHODOLOGY
Design

•  Starts mostly from/with requirements (evolving
mostly from functionalities and other non-
functional characteristics)

•  How is the software solution going to be
structured?
–  What are the main components --- (functional comp)

•  Often directly from Requirements� Functionalities (use
Cases)

–  How are these components related ?
•  possibly re-organize the components (composition/

decomposition)
•  Two main levels of design:

–  Architectural (high-level)
–  Detailed design

•  How should we depict design--notation/
language?

DESIGN: ARCHITECTURE & METHODOLOGY
 Relationship between Architecture and Design

Detailed Design
come from
Requirements &
Architecture

DESIGN: ARCHITECTURE & METHODOLOGY
Software Architecture

•  Structure(s) of the solution, comprising:
1.  Major Software Elements
2.  Their externally visible properties
3.  Relationships among elements

•  Every software system has an architecture

•  May have Multiple structures !
–  multiple ways of organizing elements, depending on the

perspective

•  External properties of components (& modules)
–  Component (Module) interfaces
–  Component (Module) interactions, rather than internals of

components and modules

DESIGN: ARCHITECTURE & METHODOLOGY
Views and Viewpoints

•  View – Representation of a system structure
•  4+1 views (by Krutchen)

–  Logical (OO decomposition – key abstractions)
–  Process (run-time, concurrency/distribution of functions)
–  Subsystem decomposition
–  Physical architecture
–  +1: use cases

•  Other classification (Bass, Clements, Kazman)
–  Module
–  Run-Time
–  Allocation (mapping to development environment)

•  Different views for different people

DESIGN: ARCHITECTURE & METHODOLOGY
Architectural Styles/Patterns

1.  Pipes-and-Filters
2.  Event-Driven
3.  Client-Server
4.  Model-View-Controller (MVC)
5.  Layered
6.  Database Centric
7.  Three tier

We discuss Architectural Styles/Patterns as
�reusable� starting point for Design activities

DESIGN: ARCHITECTURE & METHODOLOGY
Pipe-Filter architecture style

•  The high level design solution is decomposed into 2
�generic� parts (filters and pipes):
–  Filter is a service that transforms a stream of input data into

a stream of output data

–  Pipe is a mechanism or conduit through which the data

flows from one filter to another

Input
time cards

Prepare for
Check processing Process Checks

Problems that require batch file processing seem to fit this architecture:
e. g. payroll, compilers, month-end accounting

** Reminds one of DFD without the data store or source sink **

DESIGN: ARCHITECTURE & METHODOLOGY
Event-Driven (Realtime)

•  The high level design solution is based on an event dispatcher
which manages events and the functionalities which depends
on those events. These have the following characteristics:
–  Events may be a simple notification or may include associated

data
–  Events may be prioritized or be based on constraints such as time
–  Events may require synchronous or asynchronous processing
–  Events may be “registered” or “unregistered” by components

Personal (device)
dispatcher

voice
call

text
msg

Image

keypad

Phone
processing

Txt
processing

Image
processing

Problems that fit this architecture includes real-time systems such as: airplane control;
 medical equipment monitor; home monitor; embedded device controller; game; etc.

- - - try a commercial flight control system - - -

DESIGN: ARCHITECTURE & METHODOLOGY
 Basic Client-Server Style

Application split into client component and server component

DESIGN: ARCHITECTURE & METHODOLOGY

Client-Server Style

•  Client may connect to more than one
server (servers are usually independent)

DESIGN: ARCHITECTURE & METHODOLOGY

Model

Controller 1 View 1

Controller 2 View 2

•  Separates model (data) from view
•  Controller often integrated with view

nowadays

Model View Control (MVC) Style

most of the
internet web

applications fall
under this style

DESIGN: ARCHITECTURE & METHODOLOGY

The �outer� layer can only ask for service from the �inner� layer
 or �upper� layer can only ask for service from �lower� layer.
 - strict layering----- only directly inside or below layers
 - relaxed layering---- any inside or below layers

Layered Style

DESIGN: ARCHITECTURE & METHODOLOGY

Hospital
DB

Patient processing

Room Scheduling

Nurses Scheduling

 Shared Data (DB) centric style

Very popular
within the
business

applications
community

Purchasing

.

.

DESIGN: ARCHITECTURE & METHODOLOGY

DB

Client 1a

Client 1b

Client 2

Business
Tier

Three tier style (mixture)
•  Clients do not access DB directly
•  Better Flexibility, integrity (why?)

Reminds one of Client-Server or MVC ?

DESIGN: ARCHITECTURE & METHODOLOGY

Architectural Tactics
•  Tactics (in contrast to architectural style) are

for solving �smaller, specific� problems

•  Do not affect overall structure of system

•  Example: we add specific functionalities or
component (e.g. to increase reliability) in the
design for fault detection ---- especially for
distributed systems:
–  heartbeat
–  ping / echo

DESIGN: ARCHITECTURE & METHODOLOGY
Reference Architectures

•  Full-fledged architectures
•  Serves as �templates��or as �a reference��for

a class of systems
•  Example: J2EE Reference Architecture

(MVC2)

DB

Client1a

Client1b

Client2

Web
Tier

Business
Tier (EJB)

There also are �application domain specific�
 reference architectures

DESIGN: ARCHITECTURE & METHODOLOGY

Detailed Design
•  Further Refine Architecture and match

with Requirements

•  How detailed ?

•  How formal ?

•  Maybe of different levels of detail for
different views

DESIGN: ARCHITECTURE & METHODOLOGY

Functional Decomposition Technique

•  Dates back to �structured
programming� [now (non-OO)Web apps
with PHP tool]

•  Start with: main (task/requirements) ->
module

•  Refine into sub-modules

•  There are alternative decompositions

DESIGN: ARCHITECTURE & METHODOLOGY

0. Main

1.Student

1.3 Delete

1.2 Modify

1.1 Add

2.Courses 3. Sections 4. Registration

2.1 Add 3.1 Add 4.1 Register

2.2 Modify 3.2 Modify 4.2 Drop

2.3 Delete 3.3 Delete

Possible Decomposition of
(student- course management app)

DESIGN: ARCHITECTURE & METHODOLOGY

�Alternative� Decomposition/Composition

DESIGN: ARCHITECTURE & METHODOLOGY

Relational Database Design

•  Most databases use relational technology

•  Relations (tables)
– Two-dimensional sets
– Rows (tuples), Columns (attributes)

•  A Row may be an entity, Columns may be
relationship or attributes

– Primary key (unique identifier) – for search
– Foreign keys (connects tables)

DESIGN: ARCHITECTURE & METHODOLOGY

Database Design

•  Conceptual modeling (done during
analysis/requirement phase) produces ER
diagram

•  Logical design (to relational)
•  Physical design (decide data types, etc.)
•  Deployment/maintenance

– Low-level physical (which hard-drive etc)
– Adjustment of indexes

DESIGN: ARCHITECTURE & METHODOLOGY

Entity-Relationship diagrams

•  Entities (rectangles)
– Weak – double lines

•  Relationships (diamonds)
•  Attributes (ovals)

– Multi-valued - double lines
–  Identifying - underlined

DESIGN: ARCHITECTURE & METHODOLOGY

ER diagram

DESIGN: ARCHITECTURE & METHODOLOGY

Logical DB Design- Entities
•  Table per entity
•  Flatten composite attributes
•  For weak entities, add the primary key of

the strong entity

Course Number

Title

CreditHours

CourseNumber

SectionNumber

Semester

Year

Time

Location

Course Section

DESIGN: ARCHITECTURE & METHODOLOGY

Logical DB Design – Multi-valued

•  New table needed for multi-valued
attributes

E-MAIL
StudentId
e-mail

Id

STUDENT

Name
Gender

DESIGN: ARCHITECTURE & METHODOLOGY

Id

STUDENT

Name
Gender

SECTION
CourseNumber
SectionNumber
Semester
Year
Time
Location

TAKES
CourseNumber
SectionNumber
Semester
Year

Student_id
Grade

Logical DB Design - Relationships

•  If one side related to just one entity, add
foreign key to that side

•  For many-to-many, need new table
•  For ternary, need new table

DESIGN: ARCHITECTURE & METHODOLOGY

Physical DB Design

•  Data types for each attribute
– Check which ones your DBMS support
– Encoding

•  Decide on Indexes
– Searches are faster, updates are slower
–  Indexes consume space
– Can always adjust during deployment

•  Denormalization done sometimes (avoid)

DESIGN: ARCHITECTURE & METHODOLOGY

OO Design

•  First step: Review & Refine use cases

•  Decide
– Which classes to create
– How are the classes related

•  Use UML as the Design Language

DESIGN: ARCHITECTURE & METHODOLOGY

Register For Section
Add Course

Add Section

Add Student
Choose Section

Student

Registrar

Use case diagram

DESIGN: ARCHITECTURE & METHODOLOGY

Class Design
•  Classes represent real-world entities or system

concepts
•  Organized into classes: objects in a class have

similar characteristics
•  Classes have properties (attributes or data)
•  Classes also have methods (performs functions)

Student
 dateOfBirth : Date
 name : String
 getAgeInYears() : int
 getAgeInDays() : int

DESIGN: ARCHITECTURE & METHODOLOGY

Student School 0..* 1..1
Is Enrolled

UML Class diagrams
•  Association

•  Composition

School
Building

Bldg-Name: String
Bldg_number: int
Street-name: string
city : String
state : String
zipCode : int
 Use �no-fill���diamond for aggregation

DESIGN: ARCHITECTURE & METHODOLOGY

Student

Person

Employee

UML Class diagrams - Inheritance

DESIGN: ARCHITECTURE & METHODOLOGY

Accepted

Active

Alumni

Expelled

Inactive

enroll: graduate:

expel:

fails to
enroll:

enroll:

UML State diagram
depicting a student�s �status��in school

DESIGN: ARCHITECTURE & METHODOLOGY
UML �Sequence Diagram�
used to depict a flow of interactions

DESIGN: ARCHITECTURE & METHODOLOGY

User Interface Design
•  Most apparent to the user
•  Two main issues

–  i) Flow of interactions
–  Ii) Look and feel

•  Types of interfaces
–  Command-Line
–  Text menus
–  Graphical (GUI)

DESIGN: ARCHITECTURE & METHODOLOGY

Flow of interactions
Prototype Screens
1. Registration:

Select term

2. Registration: shows term
Select first course

3. Registration: shows term, course(s)
with schedule and cost

Select *Additional course; *Delete course;
*Finish registration

4. Registration: shows final schedule
Select Confirm or Cancel

DESIGN: ARCHITECTURE & METHODOLOGY

High Fidelity Prototype

DESIGN: ARCHITECTURE & METHODOLOGY

User: Screens: Process:

aStudent

Student selects course and clicks �Add
Course�

DESIGN: ARCHITECTURE & METHODOLOGY
User interaction added to the

sequence diagram

DESIGN: ARCHITECTURE & METHODOLOGY

3
specifies

action

4
executes

action

5 user
perceives
feedback

6
interprets
feedback

7
evaluates

 1 user
forms
goal

 2 forms
intention

Norman�s 7 Stage Model

DESIGN: ARCHITECTURE & METHODOLOGY

The GOMS Model
(an �advanced� topic for UI)

•  Consider different kinds of users

•  Four factors (for the kind of user)

– Goals of the user
– Operations provided by the system
– Methods or the sequence of operations
– Selection Rules for the methods

DESIGN: ARCHITECTURE & METHODOLOGY

Other UI Issues

•  Kinds of users
•  Heuristics
•  UI Guidelines
•  Multicultural issues
•  Metaphors
•  Multiplatform software
•  Accessibility
•  Multimedia Interfaces

DESIGN: ARCHITECTURE & METHODOLOGY

HTML-Script simple example

Sample HTML Visual result (possible)

<form method="GET"
action="something.php">
<p>

 Username:
<input type="text" name="username">

</p>
<p>
 Password:

<input type="password"
name="password">
</p>

<input type="submit" value="Login">
</form>

DESIGN: ARCHITECTURE & METHODOLOGY

Model-View-Controller (MVC)
software project

Model
SQL

database

View
HTML

Controller
PHP

DESIGN: ARCHITECTURE & METHODOLOGY
Object-Relational Impedance Mismatch

(an �advanced� topic)

Elem 1
Elem 2
Elem 3
Elem 4
Elem 5

Relational Table

Encapsulated Object ?

How do we handle mismatches between object-oriented concepts and
Relational DB such as :
 - typing
 - private and public
 - inheritance and polymorphism
 - nested structure versus table structure

