DESIGN: ARCHITECTURE AND
METHODOLOGY

Software Engineering
CS 130
Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal
Jones and Bartlett Learning

P —_ P A. AY4 -....

Design Topics Covered

1. Architectural .vs. Detailed design

2. “Common” architectural styles, tactics and
reference architectures

3. Basic techniques for detailed design

4. Basic issues with user-interface design

Design

Starts mostly from/with requirements (evolving
mostly from functionalities and other non-
functional characteristics)

How is the software solution going to be
structured?

— What are the main components --- (functional comp)

 Often directly from Requirements’ Functionalities (use
Cases)

— How are these components related ?

« possibly re-organize the components (composition/
decomposition)

Two main levels of design:
— Architectural (high-level)
— Detailed design

How should we depict design--notation/
language?

. k‘;. e ;. :AA -....

Relationship between Architecture and Design

. Architecture
Requirements

R1)
- Detailed Design
- - come from
(R2) Requirements &
S - Architecture
N Detailed Desy
- - N
R3) » R,
= M2)
(M1)

Nl AK — b X, N/ =1)1)()1 ()

Software Architecture

Structure(s) of the solution, comprising:

1.
2.
3.

Major Software Elements
Their externally visible properties
Relationships among elementfs

Every software system has an architecture

May have Multiple structures !

multiple ways of organizing elements, depending on the
perspective

External properties of components (& modules)
Component (Module) interfaces

Component (Module) interactions, rather than internals of
components and modules

AP - ¢ ° \ / =0 Y1)Y() (

Views and Viewpoints

View — Representation of a system structure

4+1 views (by Krutchen)

— Logical (OO decomposition — key abstractions)

— Process (run-time, concurrency/distribution of functions)
— Subsystem decomposition

— Physical architecture

— +1: use cases

Other classification (Bass, Clements, Kazman)
— Module

— Run-Time

— Allocation (mapping to development environment)
Different views for different people

N o UG hAWN A

» » K \ = C Y1)Y()] (

Archltectural StyleslPatterns

We discuss Architectural Styles/Patterns as
“reusable” starting point for Design activities

. Pipes-and-Filters

. Event-Driven

. Client-Server

. Model-View-Controller (MVC)

. Layered

Database Centric

. Three tier

Pipe-Filter architecture style

 The high level design solution is decomposed into 2
“generic” parts (filters and pipes):
— Filter is a service that transforms a stream of input data into
a stream of output data

— Pipe is a mechanism or conduit through which the data
flows from one filter to another

Input Prepare for
time cards Check processing |

—— Process Checks

** Reminds one of DFD without the data store or source sink **

Problems that require batch file processing seem to fit this architecture:
e. g. payroll, compilers, month-end accounting

NI e A K - b | \ / =10 Y1 Y()] (°

Event-Driven (Realtime)

 The high level design solution is based on an event dispatcher
which manages events and the functionalities which depends
on those events. These have the following characteristics:

— Events may be a simple notification or may include associated
data

— Events may be prioritized or be based on constraints such as time
— Events may require synchronous or asynchronous processing
— Events may be “registered” or “unregistered” by components

Phone]
-~ processing
Ters?nal (device ‘>[Txt]
__w| dispatcher 4 processing

@‘ rocssing

processing

Problems that fit this architecture includes real-time systems such as: airplane control;
medical equipment monitor; home monitor; embedded device controller; game; etc.

- - - try a commercial flight control system - - -

k‘;. e ;. :AA -....

Basic Client-Server Style

Application split into client component and server component

Clientla Client2a

T~
N

Client3a Clientdc

Server

Client-Server Style

* Client may connect to more than one
server (servers are usually independent)

Client A |

ClientB1 ClientB2 ClientCl1 ClientC2

\]°: AK - ° X, N =1)I)()] (

Model View Control (MVC) Style

» Separates model (data) from view

» Controller often integrated with view
nowadays

View 1 | Controller 1
Model
View 2 «— Controller 2
most of the
internet web

applications fall
under this style

®
N AK ® \V4

Layered Style

Java API

(11 »” = fif = »”
The "outer layer can only ask for service from the "inner layer
or “upper” layer can only ask for service from “lower” layer.

- strict _layering----- only directly inside or below layers
- relaxed layering---- any inside or below layers

Nl A K

®
P AV4

Shared Data (DB) centric style

TN
N

Hospital
DB

N

Patient processing

Room Scheduling

Purchasing

-
N

Nurses Scheduling

Very popular
within the

business
applications
community

- ° o \V, =1)I1)(C)1 (]

Three tier style (mixture)

» Clients do not access DB directly
» Better Flexibility, integrity (why?)

Client 1a

/ Client 1b

7N
_ . /
usiness
DB | > Tier
N \ Client 2

Reminds one of Client-Server or MVC ?

e N K b X \ / =10 Y1 Y()] (°

Architectural Tactics

Tactics (in contrast to architectural style) are
for solving “smaller, specific” problems

Do not affect overall structure of system

Example: we add specific functionalities or
component (e.g. to increase reliability) in the
design for fault detection ---- especially for
distributed systems:

— heartbeat
— ping / echo

A [}

N L)

Reference Architectures

* Full-fledged architectures

« Serves as "templates” or as “a reference” for
a class of systems

 Example: J2EE Reference Architecture

Clientla

/'

Rl >

Clientlb

(MVC2)
7N
o
] \ Business . . Web
DB Tier (EJB) Tier
N

T

Client2

There also are “application domain specific”

reference architectures

e AK — b X, N/ -1 (Y1)()1 ()

Detalled Design

* Further Refine Architecture and match

with Requirements
* How detailed ?
* How formal ?

« Maybe of different levels of detail for
different views

e N K - ¢ ° \ / =1 Y| Y()| (

Functional Decomposition Technique

Dates back to “structured
programming” [now (non-O0)Web apps
with PHP tool]

Start with: main (task/requirements) ->
module

Refine into sub-modules

There are alternative decompositions

[] A

Possible Decomposition of
(student- course management app)

0. Main
1.Student 2.Courses 3. Sections 4. Registration
1.1 Add 2.1 Add 3.1 Add —H.1 Register
2 Modify — -2 Modify —5.2 Modify 4.2 Drop
1.3 Delete 2.3 Delete 3.3 Delete

“Alternative” Decomposition/Composition

0. Main

1. Students

2. Courses

3. Sections

4. Registration

5. Database

5.1 Add

5.2 Modify

5.3 Delete

e N K - b X \ / =10 Y1 Y()] (°

Relational Database Design

 Most databases use relational technology

* Relations (tables)
— Two-dimensional sets

— Rows (tuples), Columns (attributes)

A Row may be an entity, Columns may be
relationship or attributes

— Primary key (unique identifier) — for search
— Foreign keys (connects tables)

AP » ° \ / YN Y Y (P

Database Design

Conceptual modeling (done during

analysis/requirement phase) produces ER
diagram

Logical design (to relational)

Physical design (decide data types, etc.)

Deployment/maintenance

— Low-level physical (which hard-drive etc)
— Adjustment of indexes

e AK — b XK, N/ =1)1)()1 ()

Entity-Relationship diagrams

* Entities (rectangles)
— Weak — double lines

* Relationships (diamonds)

» Attributes (ovals)
— Multi-valued - double lines
— ldentifying - underlined

Credit Hours

Course
Belongs

Number
Term Section

@

Student

< - ® X, N/ -1)|)()] (

Logical DB Design- Entities
» Table per entity
* Flatten composite attributes

* For weak entities, add the primary key of
the strong entity

Course Section
Course Number — CourseNumber
Title SectionNumber
CreditHours Semester
Year
Time
Location

° o \V, =1)I1)(C)1 (]

Logical DB Design — Multi-valued

* New table needed for multi-valued
attributes

STUDENT E-MAIL

Id - Studentld
Name e-mail
Gender

NI AK - ° \ / =1 Y| Y()| (

Logical DB Design - Relationships

* If one side related to just one entity, add
foreign key to that side

* For many-to-many, need new table
* For ternary, need new table

STUDENT TAKES SECTION
Id —— CourseNumber > CourseNumber
Name SectionNumber > SectionNumber
Gender Semester P Semester
Year . Year
Student_id Time
Grade Location

N\ I D X \ / " Y)Y)] (

Physical DB Design

» Data types for each attribute
— Check which ones your DBMS support
— Encoding

* Decide on Indexes
— Searches are faster, updates are slower
— |Indexes consume space
— Can always adjust during deployment

* Denormalization done sometimes (avoid)

< X, I\ -1()1 (.

OO Design

* First step: Review & Refine use cases

 Decide
— Which classes to create
— How are the classes related

» Use UML as the Design Language

N AR - ® X, N/ =1 C)I1)C)L (

Use case diagram

Add Cours>
\

\A 1
Gd SectD
\

\

\

f\/

Add Student

@se Se@ T \ >

Registrar

~
Student

Class Design

Classes represent real-world entities or system
concepts

Organized into classes: objects in a class have
similar characteristics

Classes have properties (attributes or data)
Classes also have methods (performs functions)

Student

dateOfBirth : Date
name : String

getAgelnYears() : int
getAgelnDays() : int

UML Class diagrams

e Association

Is Enrolled

Student 0.7 1.1 School
« Composition
Building
School " Bldg-Name: String

Bldg_number: int
Street-name: string
city : String

state : String
zipCode : int

Use “no-fill” diamond for aggregation

A

P N

A

4

UML Class diagrams - Inheritance

Person

Student

Employee

° ° X, N =1)I)()] (

UML State diagram

depicting a student’ s “status” in school

f 2 f 2 f D
___Accepted enroll: | Active graduate: | Alumni
N y N N y

enroll: fails to
enroll: ~
p 4 N Expelled
Inactive \ y

UML “Sequence Diagram”

used to depict a flow of interactions

RegistrationGui asection course student | | students
register(aStudent : Student)

prerequisites(
p_rgr_equ_isjtgs_]
* hasTaken(prerequisite)
boolean =~ |]
Add(aStudent)
void

T ————— T ——w— Y- —————

Luccess .

User Interface Design

 Most apparent to the user

« Two main issues
— 1) Flow of interactions

— Ii) Look and feel

* Types of interfaces
— Command-Line
— Text menus

— Graphical (GUI)

MAIN MENU Folder: INBOX 1 Message

? HELP - Get help using Pine
C COMPOSE MESSAGE - Compose and send a message
I MESSAGE INDEX - View messages in current folder

Select a folder to view

FOLDER LIST

A ADDRESS BOOK - Update address book
S SETUP - Configure Pine Options
Q QUIT - Leave the Pine program

Copyright 1989-2003.
[Folder "INBOX" opened with 1 message]
RelNotes
14 KBLock

i Help

¥4 PrevCmd
o OTHER CMDS E [ListFldrs] [NextCmd

PINE is a trademark of the University of Washington.

L]

X, N =1)I)()] (

Flow of interactions

Prototype Screens “

Welcome KKK 3 shudbuls hame

1.Registration: Regusbehen || :
. . %d{'@*’m T woa At Cvren
~wext ferm A alse
Select term - m\i%i”iiafiiéf@
| S e * Copr 5.
2.Registration: shows term [P
Select first course ;%Z; ’?Z"”*
. . Courst |~
3.Registration: shows term, course(s) =oo

‘wQ\QomQ XKX =

with schedule and cost

Select *Additional course; *Delete course;
*Finish registration

4.Registration: shows final schedule
Select Confirm or Cancel

N AR 1OPDOLC

High Fidelity Prototype

Welcome UserName

Welcome aStudent

Registration
Registration

School term to register SPR2013 ~

Desired School term to register - Spring 2012

[Help][Cancel

Select course to add | ALL Courses [

Add Course || Cancel || Help

Welcome aStudent

Registration

Desired School term to register - Spring 2012

Desired Schedule:
SWE 2313 Intro to Software Engineering | Delete course |

| Add another course || Confirm Schedule || Cancel || Help |

User: Screens:

Welcome aStudent

Registration

Desired School term to register - Spring 2012

Select course to add |ALL Courses [v|

[Add Course][Cancel][Help]

Student selects course and clicks “Add
Course”

Welcome aStudent

aStudent

Registration

Desired School term to register - Spring 2012

Desired Schedule:
SWE 2313 Intro to Software Engineering [Delete course J

[Add another course][Confirm Schedule][Cancel][Help]

Process:

User Interaction added to the
seguence diagram

Norman' s 7 Stage Model

3
2 forms ifi
_ _ specifies
intention action
1 user 4
forms executes
goal action
/EE\
, |
. 5 user
perceives
evaluates feedback
6
interprets

feedback

N AK - ® X, N/ -1)1)()1 (

The GOMS Model

(an “advanced” topic for Ul)

 Consider different kinds of users

* Four factors (for the kind of user)
— Goals of the user
— Operations provided by the system
— Methods or the sequence of operations
— Selection Rules for the methods

e NAK — XK, N/ =1)1)()1 ()

Other Ul Issues

Kinds of users
Heuristics

Ul Guidelines
Multicultural iIssues
Metaphors
Multiplatform software
Accessibility
Multimedia Interfaces

\ : : =1 C)I1)C)L (

HTML-Script simple example

Sample HTML Visual result (possible)

<form method="GET"
action="something.php">

<p>

Username: |
Username:
<input type="text" name="username"> Password: |
</p> Login |

<p>
Password:

<input type="password"”
name="password">

</p>

<input type="submit" value="Login">

</form>

- N AR(C - X X, I/ -1()1)()I (.

Model-View-Controller (MVC)
software project

_» View |__Controller
HTML PHP

Model
SQL
database

Object-Relational Impedance Mismatch
(an “advanced” topic)

Relational Table

|
|
Elem 1 :

| < > > Elem 2 |

Encapsulated Object ' Elem3! 1| 1 1 I
Elem 4 l l ' ' '
Elem51 1 1 1 1
C 1 1

| | | | |

How do we handle mismatches between object-oriented concepts and
Relational DB such as :

- typing

- private and public

- inheritance and polymorphism

- nested structure versus table structure

AL
AT
ainins

WESTMONT

JIMF

