DESIGN: IMPLEMENTATION

Software Engineering

CS 130
Donald J. Patterson

N TATION

IMPLEMENTATION TOPICS

Describe

® Characteristics of good implementations
® Best practices to achieve them
Understand role of comments

Learn debugging techniques

Analyze refactoring

N LA TION

INTRODUCTION

® Implementation:
® transforming detailed design into valid program

® Detailed design may be done as part of implementation
® Faster
® Less cohesive and less organized

® Writing code, unit testing, debugging, configuration

management

GOOD IMPLEMENTATIONS

N TATION

Readability
Maintainability
Performance
Traceability
Correctness
Completeness
Other issues:

® Relative importance ?

® Tradeoffs ?

N LA TION

CODING GUIDELINES

® Organization-specific
® Important for consistency
® Programmers can get used to them easily
® Usually mandate:
® Indenting, formatting
® Naming conventions (for files, variables etc)

® Language features to use or avoid

INDENTATION

if (hours < 24 && minutes < 60 && seconds < 60) {
return true;

} else {
return false;

if (hours < 24 && minutes < 60 && seconds < 60)

{

return true;

}

else

{

return false;

if (hours < 24
&& minutes < 60
&& seconds < 60

)

{return true
s else
{return false

H

lreturn (hours < 24 && minutes < 60 && seconds < 60); l

https://en.wikipedia.org/wiki/Programming_style

VERTICAL ALIGNMENT

$search = array('a', 'b', 'c¢', 'd', 'e'):;
$replacement = array('foo', 'bar’', 'baz', 'quux');

// Another example:

Svalue = 0;
Sanothervalue = 1;

$yetanothervalue 7

$search = array('a', 'b’', ‘e’, ‘d',
Sreplacement array('foo', 'bar’', 'baz', 'quux');

// Another example:

Svalue

$anothervalue
$yetanothervalue

$search = array('a', 'b', 'c¢', 'd', 'e');
$r = array('foo’', 'bar’', 'baz', 'quux');

// Another example:

Svalue
sa = 1;
$yetanothervalue 2°

Ssearch = array('a’, 'b’', ‘', 'd', e');
$r = array('foo', 'bar’', 'baz', 'quux');

// Another example:

Svalue

$a =1;
$yetanothervalue

https://en.wikipedia.org/wiki/Programming_style

androld

Overview
Downloading and Building
Developing

Contributing

Life of a Patch
Submitting Patches
View Patches

Life of a Bug
Reporting Bugs

Code Style Guidelines

Community

Source

<

Devices Security Compatibility

Jeo

Code Style Guidelines for Contributors

The rules below are not guidelines or recommendations, but strict
rules. Contributions to Android generally will not be accepted if they
do not adhere to these rules.

Not all existing code follows these rules, but all new code is expected
to.

Java Language Rules

We follow standard Java coding conventions. We add a few rules:

Don't Ignore Exceptions

Sometimes it is tempting to write code that completely ignores an
exception like this:

void setServerPort(String value) {
try {
serverPort = Integer.parselnt(value);
} catch (NumberFormatException e) { }

You must never do this. While you may think that your code will never
encounter this error condition or that it is not important to handle it,
ignoring exceptions like above creates mines in your code for
someone else to trip over some day. You must handle every Exception
in your code in some principled way. The specific handling varies
depending on the case.

Anytime somebody has an empty catch clause they should have a
creepy feeling. There are definitely times when it is actually the correct
thing to do, but at least you have to think about it. In Java you can't
escape the creepy feeling. -James Gosling

Acceptable alternatives (in order of preference) are:

« Throw the exception up to the caller of your method.

IN THIS DOCUMENT

Java Language Rules

Don't Ignore Exceptions
Don't Catch Generic Exception
Don't Use Finalizers

Fully Qualify Imports

Java Library Rules
Java Style Rules

Use Javadoc Standard
Comments

Write Short Methods

Define Fields in Standard Places
Limit Variable Scope

Order Import Statements

Use Spaces for Indentation

Follow Field Naming
Conventions

Use Standard Brace Style

Limit Line Length

Use Standard Java Annotations
Treat Acronyms as Words

Use TODO Comments

Log Sparingly

Be Consistent

Javatests Style Rules

Follow Test Method Naming
Conventions

void setServerPort(String value) throws NumberFormatException ({

serverPort = Integer.parselnt(value);

—

https://source.android.com/source/code-style.html

N TALTHON

STYLE ISSUES - |

® Be consistent and highlight meaning
® Naming a=b=*c:

® Convey meanlng - ——

® Be consistent weekly pay = hours worked * pay rate;

® Warning: If you can’t think of a good
name chances are you don’t
understand or the design can be
improved

® Multicultural issues

https://en.wikipedia.org/wiki/Naming_convention_(programming)

N TATION

STYLE ISSUES - I

® Separating words, capitalization
® c_uses_this_style
® JavaUsesThisOne
® Indentation and Spacing
® Function/Method size
® When is it too big ? When to break ?
® File naming

® Error prone constructs

HUNGARIAN NOTATION

bBusy :boolean

chInitial :char

cApples :countof items

dwLightYears :double word (Systems)

fBusy : float (or flag)

nSize :integer (Systems) or count (Apps)

isize :integer (Systems) or index (Apps)

fpPrice : floating-point

dbPi :double (Systems)

pFoo : pointer

rgStudents @ array, or range

szLastName :zero-terminated string
ulé6Identifier :unsigned 16-bit integer (Systems)
ud2Identifier :unsigned 32-bit integer (Systems)
stTime : clock time structure

fnFunction :function name

https://en.wikipedia.org/wiki/Hungarian_notation

N | A

COMMENTS

® Types:

Repeat of the code
Explanation of the code
Marker in the code

Summary of the code
Description of the code intent

External references

® Keep up to date !!

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

N | A

DEBUGGING

® Locating and fixing errors in code.
® Errors noticed by testing, inspection, use.
® Four phases

® Stabilization (reproduction)

® Localization

® Correction

® Verification

DEBUGGING I

® Heuristics:
®

Some routines will have many errors
Routines with an error tend to have more
New code tends to have more error

Particular ones: languages, parts, coders

® Tools

Code comparators

Extended checkers (lint)

Interactive debuggers

Special libraries

Others: Profilers, pre/post conditions, test coverage

ASSERTIONS

® Pre-condition: condition your module requires in order

to work
® Post-condition: condition that should be true if your

module worked
® Assertion: Executable statement that checks a
condition and produces an error if it is not met

® Assertions supported by many languages

N LA TION

PERFORMANCE OPTIMIZATION

® Performance tradeoffs
® Readability ?
® Maintainability ?

® Correctness is usually more important

® Profiler: runs a program and calculates how much time
it spends on each part

® Cost-benefit analysis

® Measure before ‘optimizing’

REFACTORING

® Improving your code style without affecting its behavior

® Bad Smells

Duplicated code
Long method
Large class
Switch statement
Feature envy

Intimacy

® Refactoring

Extract method
Substitute algorithm
Move method

Extract class

AL
AT
ainins

WESTMONT

JIMF

