
DESIGN: IMPLEMENTATION
Software Engineering
CS 130
Donald J. Patterson

Content adapted from Essentials of Software
Engineering 3rd edition by Tsui, Karam, Bernal
Jones and Bartlett Learning

IMPLEMENTATION TOPICS
• Describe

• Characteristics of good implementations

• Best practices to achieve them

• Understand role of comments

• Learn debugging techniques

• Analyze refactoring

IMPLEMENTATION

INTRODUCTION
• Implementation:

• transforming detailed design into valid program

• Detailed design may be done as part of implementation

• Faster

• Less cohesive and less organized

• Writing code, unit testing, debugging, configuration

management

IMPLEMENTATION

GOOD IMPLEMENTATIONS
• Readability

• Maintainability

• Performance

• Traceability

• Correctness

• Completeness

• Other issues:

• Relative importance ?

• Tradeoffs ?

IMPLEMENTATION

CODING GUIDELINES
• Organization-specific

• Important for consistency

• Programmers can get used to them easily

• Usually mandate:

• Indenting, formatting

• Naming conventions (for files, variables etc)

• Language features to use or avoid

IMPLEMENTATION

More: Programming Style on Wikipedia

INDENTATION

https://en.wikipedia.org/wiki/Programming_style

More: Programming Style on Wikipedia

VERTICAL ALIGNMENT

https://en.wikipedia.org/wiki/Programming_style

https://source.android.com/source/code-style.html

STYLE ISSUES - I
• Be consistent and highlight meaning

• Naming

• Convey meaning

• Be consistent

• Warning: If you can’t think of a good

name chances are you don’t

understand or the design can be

improved

• Multicultural issues

IMPLEMENTATION

More: Naming Conventions on Wikipedia

https://en.wikipedia.org/wiki/Naming_convention_(programming)

STYLE ISSUES - II
• Separating words, capitalization

• c_uses_this_style

• JavaUsesThisOne

• Indentation and Spacing

• Function/Method size

• When is it too big ? When to break ?

• File naming

• Error prone constructs

IMPLEMENTATION

HUNGARIAN NOTATION

IMPLEMENTATION

More: Hungarian Notation on Wikipedia

https://en.wikipedia.org/wiki/Hungarian_notation

COMMENTS
• Types:

• Repeat of the code

• Explanation of the code

• Marker in the code

• Summary of the code

• Description of the code intent

• External references

• Keep up to date !!

IMPLEMENTATION

More: Funny source code comments

http://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered

DEBUGGING
• Locating and fixing errors in code.

• Errors noticed by testing, inspection, use.

• Four phases

• Stabilization (reproduction)

• Localization

• Correction

• Verification

IMPLEMENTATION

DEBUGGING II
• Heuristics:

• Some routines will have many errors

• Routines with an error tend to have more

• New code tends to have more error

• Particular ones: languages, parts, coders

• Tools

• Code comparators

• Extended checkers (lint)

• Interactive debuggers

• Special libraries

• Others: Profilers, pre/post conditions, test coverage

IMPLEMENTATION

ASSERTIONS
• Pre-condition: condition your module requires in order

to work

• Post-condition: condition that should be true if your

module worked

• Assertion: Executable statement that checks a

condition and produces an error if it is not met

• Assertions supported by many languages

IMPLEMENTATION

PERFORMANCE OPTIMIZATION
• Performance tradeoffs

• Readability ?

• Maintainability ?

• Correctness is usually more important

• Profiler: runs a program and calculates how much time

it spends on each part

• Cost-benefit analysis

• Measure before ‘optimizing’

IMPLEMENTATION

REFACTORING
• Improving your code style without affecting its behavior

IMPLEMENTATION

• Bad Smells

• Duplicated code

• Long method

• Large class

• Switch statement

• Feature envy

• Intimacy

• Refactoring

• Extract method

• Substitute algorithm

• Move method

• Extract class

