
Chapter 10
Testing and Quality Assurance

Different styles
of doing code
review

Human Reviewer
Code Inspection
with continuous
integration
infrastructure

Pinger’s testing
set up

Testing Related topics

1.  Understand basic techniques for
software verification and validation

2. Analyze basics of software testing and
testing techniques

3. Discuss the concept of “inspection”
process

Introduction
•  Quality Assurance (QA): activities designed to

measure and improve quality in a product ---
and process

•  Quality control (QC): activities designed to
validate & verify the quality of the product
through detecting faults and “fixing” the
defects

•  Need good techniques, process, tools and
team

similar

What is “Quality?”

•  Two traditional definitions:
–  Conforms to requirements
–  Fit to use

•  Verification: checking the software conforms to
its requirements (did the software evolve from
the requirements properly)

•  Validation: checking software meets user
requirements (fit to use)

Some “Error Detection” Techniques
(finding errors)

•  Testing: executing program in a controlled
environment and “verifying/validating”
output

•  Inspections and Reviews
•  Formal methods (proving software

correct)
•  Static analysis detects “error-prone

conditions”

Faults and Failures
•  Error: a mistake made by a programmer or software

engineer which caused the fault, which in turn may
cause a failure

•  Fault (defect, bug): condition that may cause a
failure in the system

•  Failure (problem): inability of system to perform a
function according to its spec due to some fault

•  Fault or Problem severity (based on consequences)
•  Fault or Problem priority (based on importance of

developing a fix which is in turn based on severity)

Testing
•  Activity performed for

–  Evaluating product quality
–  Improving products by identifying defects and

having them fixed prior to software release.
•  Dynamic (running-program) verification of

program’s behavior on a finite set of test
cases selected from execution domain

•  Testing can NOT prove product works 100%- -
- even though we use testing to demonstrate
that parts of the software works

Not always
 done !

Testing

•  Who tests
–  Programmers
–  Testers/Req. Analyst
–  Users

•  What is tested
–  Unit Code testing
–  Functional Code

testing
–  Integration/system

testing
–  User interface testing

•  Why test
–  Acceptance (customer)
–  Conformance (std, laws, etc)
–  Configuration (user .vs. dev.)
–  Performance, stress,

security, etc.
•  How (test cases designed)

–  Intuition
–  Specification based (black

box)
–  Code based (white-box)
–  Existing cases (regression)

 Progression of Testing

Unit Test

Unit Test

Unit Test

.

.

.

Functional Test

Functional Test

.

.

Component Test

Component Test

. System/Regression
 Test

Equivalence Class partitioning

•  Divide the input into
several groups, deemed
“equivalent” for purposes
of finding errors.

•  Pick one “representative”
for each class used for
testing.

•  Equivalence classes
determined by req./des.
specifications and some
intuition

Class Representative

First > Second 10,7

Second > First 8,12

First = second 36, 36

Example: pick “larger” of
two integers and -------

1. Lessen duplication
2. Complete coverage

Simple Example of Equivalence Testing

•  Suppose we have n distinct functional
requirements.
–  Suppose further that these n “functional”

requirements are such that
•  r1 U r2 U ------ U rn = all n requirements and
•  ri ∩ rj = θ

–  We can devise a test scenario, ti, for each of the ri
functionality to check if ri “works.” Then:

•  t1 U t2 U --------- tn = all the test cases to cover the
software functionalities.

•  Note that there may be more than one ti for ri. But picking
only one from the set of potential test cases for ri, we
form an equivalence class of test cases

Boundary Value analysis
(A Black-Box technique)

•  Past experiences show that “Boundaries” are
error-prone

•  Do equivalence-class partitioning, add test
cases for boundaries (at boundary, outside, inside)
–  Reduced cases: consider boundary as falling between

numbers
•  If boundary is at12, normal: 11,12,13; reduced: 12,13

(boundary 12 and 13)

•  Large number of cases (~3 per boundary)
•  Good for “ordinal values”

Boundaries of the input values

n 1 1000000

age 1 150

The “basic” boundary value testing for a value would include:
 1. - at the “minimum” boundary
 2. - immediately above minimum
 3. - between minimum and maximum (nominal)
 4. - immediately below maximum
 5. - at the “maximum” boundary

 1 <= number of employees, n <= 1000000

 1 <= employee age <= 150

** note that we did not include the “outside” of the boundaries here**

Path Analysis
•  White-Box technique
•  Two tasks

1.  Analyze number of
paths in program

2.  Decide which ones to
test

•  Decreasing
coverage:
–  Logical paths
–  Independent paths
–  Branch coverage
–  Statement coverage

S1

S3

S2

C1

1

4

2

3

Path1 : S1 – C1 – S3
Path2 : S1 – C1 – S2 – S3
 OR
Path1: segments (1,4)
Path2: segments (1,2,3)

S1

S2

S3

S4

S5

C1

C2

C3

1

5

6

7

2

4

3

10

9

8

The 4 Independent Paths Covers:

Path1: includes S1-C1-S2-S5
Path2: includes S1-C1-C2-S3-S5
Path3: includes S1-C1-C2-C3-S4-S5
Path4: includes S1-C1-C2-C3-S5

 A “CASE” Structure

Example with a Loop

S1

S2

S3 C1

3

2

1

4

Linearly Independent Paths are:

 path1 : S1-C1-S3 (segments 1,4)
 path2 : S1-C1-S2-C1-S3 (segments 1,2,3,4)

 A Simple Loop Structure

 Linearly Independent Set of Paths

C1

C2

S1

S2

6

5
4

3

2
1

path1

path2

path3

path4

1 2 3 4 5 6
1 1 1

1 1

1 1 1

1 1 1 1

Consider path1, path2 and path3 as
the Linearly Independent Set

Remember McCabe’s Cyclomatic number ?
It is the same as linearly independent set of paths

Total # of Paths and Linearly Independent Paths

S1

C1

C2

C3

S2

S3

S4 S5

2
1

3

4

5
6

8 9

7

Since for each binary decision, there are 2 paths and
there are 3 in sequence, there are 23 = 8 total “logical” paths

 path1 : S1-C1-S2-C2-C3-S4
 path2 : S1-C1-S2-C2-C3-S5
 path3 : S1-C1-S2-C2-S3-C3-S4
 path4 : S1-C1-S2-C2-S3-C3-S5

 path5 : S1-C1-C2-C3-S4
 path6 : S1-C1-C2-C3-S5
 path7 : S1-C1-C2-S3-C3-S4
 path8 : S1-C1-C2-S3-C3-S5

How many Linearly Independent paths are there?
Using Cyclomatic number = 3 decisions +1 = 4

One set would be:
 path1 : includes segments (1,2,4,6,9)
 path2 : includes segments (1,2,4,6,8)
 path3 : includes segments (1,2,4,5,7,9)
 path5 : includes segments (1,3,6,9)

Combinations of Conditions

•  Function of several related variables

•  To fully test, we need all possible
combinations (of equivalence classes)

•  How to reduce testing:
–  Coverage analysis
–  Assess “important” (e.g. main functionalities)

cases
–  Test all pairs of relations (but not all combinations)

Unit Testing
•  Unit Testing: Test each individual unit

•  Usually done by the programmer

•  Test each unit as it is developed (small chunks)

•  Keep test cases/results around (use Junit or
xxxUnit)
–  Allows for regression testing
–  Facilitates refactoring
–  Tests become documentation !!

Test-Driven development
•  Write unit-test cases BEFORE the code !
•  Tests cases “are” / “becomes”

requirements
•  Forces development in small steps
•  Steps:

1.  Write test case & code
2.  Verify (it fails or runs)
3.  Modify code so it succeeds
4.  Rerun test case, previous tests
5.  Refactor until (success and satisfaction)

When to stop testing ?
•  Simple answer, stop when

– All planned test cases are executed
– All those problems that are found are fixed

•  Other techniques:
– Stop when you are not finding any more errors
– Defect seeding -- test until all (or % of)the

seeded bugs found
•  NOT -- when you ran out of time -- poor

planning!

Defect Seeding
•  Seed the program (component)

–  Generate and scatter with “x” number of bugs &
–  do not tell the testers.
–  - set a % (e. g. 95%) of seed bugs found as stopping

criteria
•  Suppose “y” number of the “x” seed bugs are

found
–  If (y/x) > (stopping percentage); stop testing
–  If (y/x) ≤ (stopping percentage), keep on testing

•  Get a feel of how many bugs may still remain:
•  Suppose you discovered “u” non-seeded bugs through testing
•  Set y/x = u/v ; v = (u * x)/y
•  Then there is most likely (v-u) bugs still left in the software.

Problem Find Rate

Problem
Find Rate (y)

of Problems
Found per hour

Time (x)

Day
1

Day
2

Day
3

Day
4

Day
5

Decreasing Problem Find Rate

y = ae-bx

Class of curves

Inspections and Reviews
•  Review: any process involving human

testers reading and understanding a
document and then analyzing it with the
purpose of detecting errors

•  Walkthrough: author explaining
document to team of people

•  Software inspection: detailed reviews of
work in progress, following Fagan’s
method.

Software Inspections

•  Steps:

1.  Planning
2.  Overview
3.  Preparation
4.  Inspection
5.  Rework
6.  Follow-Up

•  Focused on finding
defects

•  Output: list of defects
•  Team of:

–  3-6 people
–  Author included
–  People working on

related efforts
–  Moderator, reader,

scribe

Inspections vs Testing

•  Inspections
–  Partially Cost-effective
–  Can be applied to

intermediate artifacts
–  Catches defects early
–  Helps disseminate

knowledge about
project and best
practices

•  Testing
–  Finds errors cheaper,

but correcting them is
expensive

–  Can only be applied to
code

–  Catches defects late
(after implementation)

–  Necessary to gauge
quality

Formal Methods
•  Mathematical techniques used to prove that a

program works
•  Used for requirements/design/algorithm

specification
•  Prove that implementation conforms to spec
•  Pre and Post conditions
•  Problems:

–  Require math training
–  Not applicable to all programs
–  Only verification, not validation
–  Not applicable to all aspects of program (e.g. UI or

maintainability)

Static Analysis
•  Examination of static structures of

design/code for detecting error-prone
conditions (cohesion --- coupling)

•  Automatic program tools are more useful
•  Can be applied to:

–  Intermediate documents (but in formal model)
– Source code
– Executable files

•  Output needs to be checked by
programmer

