
QUERYING
Introduction to
Information Retrieval
CS 150
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

QUERYING

• A zone is an extension of a field

• A zone is an identified region of a document

• e.g., title, abstract, bibliography

• Generally identified by mark-up in a document

• <title>Romeo and Juliet</title>

• Contents of zone are free text

• Not a finite vocabulary

• Indices required for each zone to enable queries like:

• (instant in TITLE) AND (oatmeal in BODY)

• Doesn’t cover “all papers whose authors cite themselves”

• Why?

ZONES

QUERYING

• Now, we crawl the corpus

• We parse the document keeping track of terms, fields

and docIDs

• Instead of building just a (term, docID) pair

• We build (term, field, docID) triples

• These can then be combined into postings like this:

William.author 2 4 8 16 32 64

William.title 1 2 3 5 8 13

William.abstract 1 3 5 7 9 11

PARAMETRIC/ZONE SEARCH

QUERYING

• So are we just creating a database?

• Not really.

• Databases have more functionality

• Transactions

• Recovery

• Our index can be recreated. Not so with database.

• Text is never stored outside of indices

• We are focusing on optimized indices for text-oriented

queries not a full SQL engine

PARAMETRIC/ZONE SEARCH

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

QUERYING

SCORING
• Boolean queries “match” or “don’t match”

• Good for experts with needs for precision and coverage

• knowledge of corpus

• need 1000’s of results

• Not good with non-expert users

• who don’t understand boolean operators

• or how they apply to search

• or who don’t want 1000’s of results

QUERYING

SCORING
• Boolean queries require careful crafting to get the right

number of results (Ferrari example)

• Ranked lists eliminate this concern

• Doesn’t matter how big the list is

• Scoring is the basis for ranking or sorting document that

are returned from a query.

• Ideally the score is high when the document is relevant

• WLOG we will assume scores are between 0 and 1 for

each doc.

QUERYING

• First generation of scoring used a linear combination of

Booleans

• Explicit decision about importance of zone

• Each subquery is 0 or 1

• This example has a finite number of possible values

• What are they?

Score = 0.6(oatmeal � TITLE) +
0.3(oatmeal � BODY) +
0.1(oatmeal � ABSTRACT)

WEIGHTED ZONE SCORING

QUERYING

• Subqueries could be *any* Boolean query

• Where do we get the weights? (e.g., 0.6,0.3,0.1)

• Rarely from the user

• Usually built into the query engine

• Where does the query engine get them from?

• Machine learning

Score = 0.6(oatmeal � TITLE) +
0.3(oatmeal � BODY) +
0.1(oatmeal � ABSTRACT)

QUERYING

WEIGHTED ZONE SCORING

• Calculate the score for each document based on the

weightings (0.1 author), (0.3 body), (0.6 title)

• For the query

• “bill” or “rights”

bill.author 1 2

rights.author

bill.title 3 5 8

rights.title 3 5 9

bill.body 1 2 5 9

rights.body 3 5 8 9

SCORING EXERCISE

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

QUERYING

ZONES COMBINATION INDEX bill.author 1 2

rights.author

bill.title 3 5 8

rights.title 3 5 9

bill.body 1 2 5 9

rights.body 3 5 8 9

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

• Encode the zone in the posting

• At query time accumulate the

contributions to the total score

from the various postings

QUERYING

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9
8: 0.9

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9

5: 0.9
8: 0.9
9: 0.9

SCORING WITH ZONES COMBINATION INDEX

QUERYING

bill 1.author 2.author

rights 3.title

3.title 5.title

5.title 9.title

8.title1.body 2.body 5.body 9.body

3.body 5.body 8.body 9.body

“bill OR rights” (0.1 author), (0.3 body), (0.6 title)

1: 0.4
2: 0.4
3: 0.9
5: 0.9
8: 0.9
9: 0.9Results

• As we walk, we accumulate scores linearly

• Note: getting “bill” and “rights” in the title field didn’t

cause us to score any higher

• Should it?

• Where do the weights come from?

• Machine learning

• Given a corpus, test queries and “gold standard”

relevance scores, compute weights which come as

close as possible to “gold standard”

SCORING WITH ZONES COMBINATION INDEX

QUERYING

FULL TEXT QUERIES
• Previous example was for “bill OR rights”

• Average user is likely to type “bill rights” or “bill of

rights”

• How do we interpret such a query?

• No Boolean operators

• Some query terms might not be in the document

• Some query terms might not be in a zone

QUERYING

FULL TEXT QUERIES
• To use zone combinations for free text queries, we

need:

• A way of scoring = Score(full-text-query, zone)

• Zero query terms in zone -> zero score

• More query terms in a zone -> higher score

• Scores don’t have to be boolean (0 or 1) anymore

• Let’s look at the alternatives...

QUERYING

BUILDING UP OUR QUERY TECHNOLOGY
• “Matching” search

• Linear on-demand retrieval (aka grep)

• 0/1 Vector-Based Boolean Queries

• Posting-Based Boolean Queries

• Ranked search

• Parametric Search

• Zones

• Scoring

• Term Frequency Matrices

QUERYING

INCIDENCE MATRICES
• Recall how a document, d, (or a zone) is a (0,1) column

vector

• A query, q, is also a column vector. How so?

QUERYING

INCIDENCE MATRICES
• Using this formalism, score can be an overlap measure:

|q �D|

QUERYING

INCIDENCE MATRICES
• Example:

• Query “ides of march”

• Shakespeare’s “Julius Caesar” has a score of 3

• Plays that contain “march” and “of” score 2

• Plays that contain “of” score 1

• Algorithm:

• Bitwise-And between q and matrix, D

• Column summation

• Sort

QUERYING

• What is wrong with the overlap measure?

• It doesn’t consider:

• Term frequency in a document

• Term scarcity in corpus

• “ides” is much rarer than “of”

• Length of a document

• Length of queries

INCIDENCE MATRICES

QUERYING

TOWARD BETTER SCORING
• Overlap Measure

• Normalizing queries

• Jaccard Coefficient

• Score is number of words that overlap

divided by total number of words

• What documents would score best?

• Cosine Measure

• Will the same documents score well?

|q ⇥ d|
|q � d|

|q � d|�
|q||d|

|q � d|

QUERYING

TOWARD BETTER SCORING
• Scores so far capture position (zone) and overlap

• Next step: a document which talks about a topic should

be a better match

• Even when there is a single term in the query

• Document is relevant if the term occurs a lot

• This brings us to term weighting

QUERYING

BAG OF WORDS MODEL
• “Don fears the mole man” equals “The mole man fears Don”

• The incidence matrix for both looks the same

Don fears the mole man

Don
fears

the

mole

man

The mole man fears Don

Don
fears

the

mole

man

d1 d2

Don 1 1
fears 1 1
man 1 1
mole 1 1
mule 0 0
the 1 1
zoo 0 0

QUERYING

TERM FREQUENCY MATRIX
• Bag of words

• Document is vector with integer elements

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

QUERYING

TERM FREQUENCY
• Is raw term frequency the right number?

• Long documents are favored because they are more

likely to contain query terms

• Reduce the impact by normalizing by document length

QUERYING

WEIGHTING TERM FREQUENCY - WTF
• What is the relative importance of

• 0 vs. 1 occurrence of a word in a document?

• 1 vs. 2 occurrences of a word in a document?

• 2 vs. 100 occurrences of a word in a document?

• Answer is unclear:

• More is better, but not proportionally

• An alternative to raw tf: WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

QUERYING

WEIGHTING TERM FREQUENCY - WTF
• The score for query, q, is

• Sum over terms, t

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

ScoreWTF (q, d) =
�

t�q

(WTF (t, d))

http://www.archives.gov/exhibits/charters/declaration_transcript.html

What is the score of “bill rights” in the
declaration of independence?

QUERYING

http://www.archives.gov/exhibits/charters/declaration_transcript.html

WEIGHTING TERM FREQUENCY - WTF
• The score for query, q, is

• Sum over terms, t

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

ScoreWTF (q, d) =
�

t�q

(WTF (t, d))

http://www.archives.gov/exhibits/charters/declaration_transcript.html

QUERYING

ScoreWTF (”bill rights”, declarationOfIndependence) =
WTF (”bill”, declarationOfIndependence) +

WTF (”rights”, declarationOfIndependence) =
0 + 1 + log(3) = 1.48

http://www.archives.gov/exhibits/charters/declaration_transcript.html

WEIGHTING TERM FREQUENCY - WTF
ScoreWTF (q, d) =

�

t�q

(WTF (t, d))

ScoreWTF (”bill rights”, declarationOfIndependence) =
WTF (”bill”, declarationOfIndependence) +

WTF (”rights”, declarationOfIndependence) =
0 + 1 + log(3) = 1.48

ScoreWTF (”bill rights”, constitution) =
WTF (”bill”, constitution) +

WTF (”rights”, constitution) =
1 + log(10) + 1 + log(1) = 3

QUERYING

