Introduction to Information Retrieval CS 150 Donald J. Patterson

Content adapted from Hinrich Schütze http://www.informationretrieval.org

WEIGHTING TERM FREQUENCY - WTF

- What is the relative importance of
 - 0 vs. 1 occurrence of a word in a document?
 - 1 vs. 2 occurrences of a word in a document?
 - 2 vs. 100 occurrences of a word in a document?
- Answer is unclear:
 - More is better, but not proportionally
 - An alternative to raw tf: WTF(t, d)
 - 1 **if** $tf_{t,d} = 0$
 - 2 then return(0)
 - 3 else $return(1 + log(tf_{t,d}))$

WEIGHTING TERM FREQUENCY - WTF

- The score for query, q, is
 - Sum over terms, t

WTF
$$(t, d)$$

1 if $tf_{t,d} = 0$
2 then $return(0)$
3 else $return(1 + log(tf_{t,d}))$

$$Score_{WTF}(q,d) = \sum_{t \in q} (WTF(t,d))$$

What is the score of "bill rights" in the declaration of independence?

http://www.archives.gov/exhibits/charters/declaration_transcr

WEIGHTING TERM FREQUENCY - WTF

- The score for query, q, is WTF(t, d)
 - Sum over terms, t

1 if
$$tf_{t,d} = 0$$

2 then $return(0)$
3 else $return(1 + log(tf_{t,d}))$

$$Score_{WTF}(q,d) = \sum_{t \in q} (WTF(t,d))$$

- $Score_{WTF}("bill rights", declarationOfIndependence) =$
 - WTF("bill", declarationOfIndependence) +
 - WTF("rights", declaration Of Independence)
 - 0 + 1 + log(3)

=

1.48

http://www.archives.gov/exhibits/charters/declaration_transc

WEIGHTING TERM FREQUENCY - WTF $Score_{WTF}(q, d) = \sum_{t \in q} (WTF(t, d))$

- $Score_{WTF}("bill rights", declarationOfIndependence) = WTF("bill", declarationOfIndependence) + WTF("rights", declarationOfIndependence) = 0 + 1 + log(3) = 1.48$
 - $Score_{WTF}("bill rights", constitution) = WTF("bill", constitution) +$
 - WTF("rights", constitution)
 - 1 + log(10) + 1 + log(1)

=

3

WEIGHTING TERM FREQUENCY - WTF

• Can be zone combined:

 $Score = 0.6(Score_{WTF}("instant oatmeal health", d.title) + 0.3(Score_{WTF}("instant oatmeal health", d.body) + 0.1(Score_{WTF}("instant oatmeal health", d.abstract))$

- Note that you get 0 if there are no query terms in the document.
 - Is that really what you want?
 - We will eventually address this

UNSATISFIED WITH TERM WEIGHTING

- Which of these tells you more about a document?
 - 10 occurrences of "mole"
 - 10 occurrences of "man"
 - 10 occurrences of "the"
- It would be nice if common words had less impact
 - How do we decide what is common?
- Let's use corpus-wide statistics

CORPUS-WIDE STATISTICS

- Collection Frequency, cf
 - Define: The total number of occurrences of the term in the entire corpus
- Document Frequency, df
 - Define: The total number of documents which contain the term in the corpus

CORPUS-WIDE STATISTICS

Word Collection Frequency Document Frequency

insurance	10440	3997
try	10422	8760

- This suggests that df is better at discriminating between documents
- How do we use df?

CORPUS-WIDE STATISTICS

- Term-Frequency, Inverse Document Frequency Weights
 - "tf-idf"
 - tf = term frequency
 - some measure of term density in a document
 - idf = inverse document frequency
 - a measure of the informativeness of a term
 - it's rarity across the corpus
 - could be just a count of documents with the term
 - more commonly it is: $idf_t = log$

QUERYING TF-IDF EXAMPLES

$$idf_t = log\left(\frac{|corpus|}{df_t}\right)$$
 $idf_t = log_{10}\left(\frac{1,000,000}{df_t}\right)$

term	df_t	idf_t	
cal purnia	1	6	
animal	10	4	
sunday	1000	3	
fly	10,000	2	
under	100,000	I	
the	1,000,000	0	

TF-IDF SUMMARY

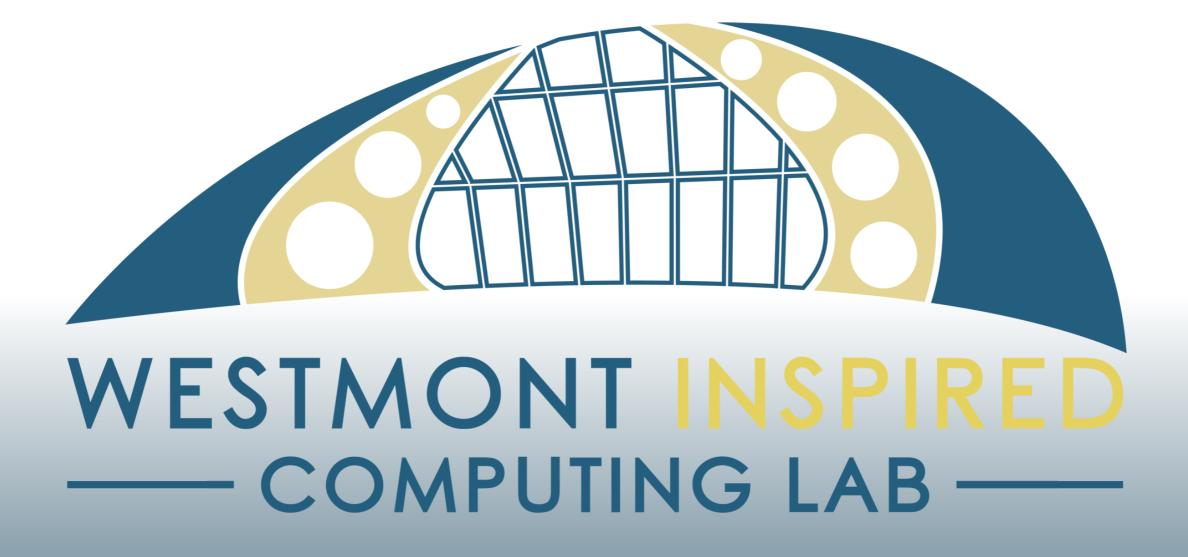
• Assign tf-idf weight for each term t in a document d:

$$tfidf(t,d) = WTF(t,d) * log\left(\frac{|corpus|}{df_{t,d}}\right)$$
$$(1 + log(tf_{t,d}))$$

- Increases with number of occurrences of term in a doc.
- Increases with rarity of term across entire corpus
- Three different metrics
 - term frequency
 - document frequency
 - collection/corpus size

NOW, REAL-VALUED TERM-DOCUMENT MATRICES

- Bag of words model
- Each element of matrix is tf-idf value


	Antony and	Julius	The Tempest	Hamlet	Othello	Macbeth
	Cleopatra	Caesar				
Antony	13.1	11.4	0.0	0.0	0.0	0.0
Brutus	3.0	8.3	0.0	1.0	0.0	0.0
Caesar	2.3	2.3	0.0	0.5	0.3	0.3
Calpurnia	0.0	11.2	0.0	0.0	0.0	0.0
Cleopatra	17.7	0.0	0.0	0.0	0.0	0.0
mercy	0.5	0.0	0.7	0.9	0.9	0.3
worser	1.2	0.0	0.6	0.6	0.6	0.0

The numbers are just examples, they are not correct with resp to tf-idf and the previous slide

VECTOR SPACE SCORING

- That is a nice matrix, but
 - How does it relate to scoring?
 - Next, vector space scoring

