VECTOR SPACE SCORING

Introduction to
Information Retrieval
CS 150

Donald J. Patterson

Content adapted from Hinrich Schutze
http:/ /www.informationretrieval.org

http://www.informationretrieval.org

OR SPA ORIN
VECTORS AND BOOLEAN QUERIES

® Ranked queries and Boolean queries don’t work very well together

® In term space
® ranked queries select based on sector containment - cosine
similarity

® boolean queries select based on rectangle unions and

, 1ntersections A
XNY
Q V(d) O V(do)
'/_-

VECTORS AND WILD CARDS

® How could we work with the query, “quick® print*” ?

® Can we view this as a bag of words?
® What about expanding each wild-card into the
matching set of dictionary terms?
® Danger: Unlike the boolean case, we now have tfs and
idfs to deal with

® Overall, not a great idea

VECTORS AND OTHER OPERATORS

® Vector space queries are good for no-syntax, bag-of-

words queries

Nice mathematical formalism

Clear metaphor for similar document queries
Doesn’t work well with Boolean, wild-card or
positional query operators

But ...

QUERY LANGUAGE VS. SCORING

® Interfaces to the rescue

® Free text queries are often separated from operator
query language

® Default is free text query

® Advanced query operators are available in “advanced
query” section of interface

® Or embedded in free text query with special syntax

® aka -term -"terma termb”

ALTERNATIVES TO TF-IDF

® Sublinear tf scaling

® 20 occurrences of “mole” does not indicate 20 times

the relevance

® This motivated the WTF score.
WTF(t,d)
1 ifitfiq=0
2 then return(0)
3 else return(l+ log(tfi.q))

® There are other variants for reducing the impact of

repeated terms

TF NORMALIZATION

® Normalize tf weights by maximum tf in that document
Cft.d
t frnaz(d)

ntfia=a+(1—a)

® alpha is a smoothing term from (O - 1.0) ~0.4 in
practice

® This addresses a length bias.

® Take one document, repeat it, WTF goes up

® this score reduces that impact

TF NORMALIZATION

® Normalize tf weights by maximum tf in that document

Cft.d

ntft,d:omL(l—oz)tf @

® a change in the stop word list can change weights
drastically - hard to tune
® still based on bag of words model
® one outlier word, repeated many times might
throw off the algorithmic understanding of the

content

on 2 A
LAUNDRY LIST

on
A

\

Term Frequency Document Frequency Normalization
(n)atural tft.d (n)o 1 (n)one 1
(Dogarithm 1+ log(tfi.aq) t (t)idf l % d (c)osine \/w12—i—w2%—i—...—i—wm2
(a)ugmented «+ (1 — a)% (p)robidf max{0,log(|Corp§]i|_ Iy | (w)pivoted 1/u
(b)oolean tfea>071:0 (b)yte 1/CharLength®, a < 1
1+log(tfe,a)
(L)ogaverage 1+l09(avited(?ft,d))

® SMART system of describing your IR vector algorithm

® ddd.qqq (ddd = document weighting) (qqq = query

weighting)

® first is term weighting, second is document, then

normalization

® Jtc.ltc is what?

EFFICIENT COSINE RANKING

® Find the k docs in the corpus “nearest” to the query

® the k largest query-doc cosines
® Eificient ranking means:
® Computing a single cosine efficiently
® Computing the k largest cosine values efficiently
® Can we do this without computing all n cosines?

® n = number of documents in corpus

EFFICIENT COSINE RANKING

® Computing a single cosine

® Use inverted index

® At query time use an array of accumulators Aj to
accumulate component-wise sum (incremental dot-
product)

® Accumulate scores as postings lists are being
processed (numerator of similarity score)

Aj = Z (wq twa,t)

t

R 1\

EFFICIENT COSINE RANKING
® For the web

® an array of accumulators in memory is infeasible

® so0 only create accumulators for docs that occur in
postings list
® dynamically create accumulators

® put the tfidf scores in the postings lists themselves

® limit docs to non-zero cosines on rare words
® or non-zero cosines on all words

® reduces number of accumulators

er YR LN

EFFICIENT COSINE RANKING

COSINESCORE(q)
1 INITIALIZE(Scores|d € D))
INITIALIZE(M agnitude|d € D))
for each term(t € q)
do p «— FETCHPOSTINGSLIST(?)
dfs < GETCORPUSWIDESTATS(p)
ot 4 <— WEIGHTINQUERY (¢, q, dft)
for each {d,tfiq} € p
do Scores|d| + = a4 - WEIGHTINDOCUMENT(t, q, df})
for d € Scores
do NORMALIZE(Scores|d|, Magnitude|d))
return top K € Scores

—_ O O 00 J O O i W N

et

USE HEAP FOR SELECTING THE TOP K SCORES

® Binary tree in which each node’s value > the values of

children
® Takes 2N operations to construct
® then each of k “winners” read off in 2logn steps

® Forn =1M, k=100 this is about 10% of the cost of

sorting

® Java “TreeMap” for example

AL
AT
ainins

WESTMONT

JIMF

