
MATRIX DECOMPOSITION
AND LATENT SEMANTIC
INDEXING (LSI)
Introduction to
Information Retrieval
CS 150
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

Outline

Latent Semantic Indexing

• Introduction

• Linear Algebra Refresher

Star Cluster NGC 290 - ESA & NASA

Latent Semantic Indexing - Introduction

Star Cluster NGC 290 - ESA & NASA

Latent Semantic Indexing - Introduction

• A picture of the sky is two dimensional

• The stars are not in two dimensions

• When we take a photo of stars we are projecting them

into 2-D

• projecting can be defined mathematically

• When we see two stars that are close..

• They may not be close in space

• When we see two stars that appear far...

• They may not be far in 3-D space

Star Cluster NGC 290 - ESA & NASA

Latent Semantic Indexing - Introduction

• When we see two stars that are close in a photo

• They really are close for some applications

• For example pointing a big telescope at them

• Large shared telescopes order their views according to

how “close” they are.

Overhead projector example

Latent Semantic Indexing - Introduction

Overhead projector example

Latent Semantic Indexing - Introduction

• Depending on where we put the light (and the wall) we can

make things in three dimensions appear close or far away in

two dimensions.

• Even though the “real” position of the 3-d objects never

moved.

Mathematically speaking

Latent Semantic Indexing - Introduction

• This is taking a 3-D point and projecting it into 2-D

• The arrow in this picture acts like the overhead projector

(10, 10, 10)

(x, y, z)

(10, 10)

(x, y)

10

10

10

10

10

Mathematically speaking

Latent Semantic Indexing - Introduction

• We can project from any number of dimensions into any

other number of dimensions.

• Increasing dimensions adds redundant information

• But sometimes useful

• Support Vector Machines (kernel methods) do this

effectively

• Latent Semantic Indexing always reduces the number of

dimensions

Mathematically speaking

Latent Semantic Indexing - Introduction

• Latent Semantic Indexing always reduces the number of

dimensions
(10, 10)

(x,y)

(10)

(x)

10

10

10

Mathematically speaking

Latent Semantic Indexing - Introduction

• Latent Semantic Indexing can project on an arbitrary axis, not

just a principal axis

Mathematically speaking

Latent Semantic Indexing - Introduction

• Our documents were just points in an N-dimensional term

space

• We can project them also

Mathematically speaking

Latent Semantic Indexing - Introduction

• Latent Semantic Indexing makes the claim that these new

axes represent semantics - deeper meaning than just a term

Mathematically speaking

Latent Semantic Indexing - Introduction

• A term vector that is projected on new vectors may uncover

deeper meanings

• For example

• Transforming the 3 axes of a term matrix from “ball”

“bat” and “cave” to

• An axis that merges “ball” and “bat”

• An axis that merges “bat” and “cave”

• Should be able to separate differences in meaning of

the term “bat”

• Bonus: less dimensions is faster

Linear Algebra Refresher

Latent Semantic Indexing - Linear Algebra Refresher

• Let C be an M by N matrix with real-valued entries

• for example our term document matrix

• A matrix with the same number of rows and

columns is called a square matrix

• An M by M matrix with elements only on the

diagonal is called a diagonal matrix

• The identity matrix is a diagonal matrix with ones

on the main diagonal

1 2 3 4 5

0 2 3 2 1

1 0 0 1 1

C

M=3

N=5

5 0 0 0 0 0

0 2 0 0 0 0

0 0 5 0 0 0

0 0 0 0 0 0

0 0 0 0 7 0

0 0 0 0 0 2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 2 3

0 2 3

1 1 1

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• Splits a matrix into three matrices

• Such that

• If

• then

• and

• and

• also Sigma is almost a diagonal matrix

U � V T

C = U�V T

C is (M by N)

U is (M by M)

� is (M by N)

V T is (N by N)

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• Is a technique that splits a matrix into three

components with these properties.

• They also have some other properties which

are relevant to latent semantic indexing

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• Is a technique that splits a matrix into three

components with these properties.

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• SVD enables lossy compression of your term-document matrix

• reduces the dimensionality or the rank

• you can arbitrarily reduce the dimensionality by putting

zeros in the bottom right of sigma

• this is a mathematically optimal way of reducing dimensions

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• If the old dimensions were based on terms

• after reducing the rank of the matrix the dimensionality

is based on concepts or semantics

• a concept is a linear combination of terms

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• 4 dimensions to 3 dimensions

a b c d
a� b� c� d�

a�� b�� c�� d��

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• 4 dimensions to 3 dimensions

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�
SV Ddim1

SV Ddim2

SV Ddim3

=

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�
SV Ddim1

SV Ddim2

SV Ddim3

=

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�
SV Ddim1

SV Ddim2

SV Ddim3

=

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�
SV Ddim1

SV Ddim2

SV Ddim3

=

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

a b c d
a� b� c� d�

a�� b�� c�� d��

tddim1

tddim2

tddim3

tddim4

�
SV Ddim1

SV Ddim2

SV Ddim3

=

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• Singular Value Decomposition

• SVD is an algorithm that gives us

• With these quantities we can reduce dimensionality

• With reduced dimensionality

• synonyms are mapped onto the same location

• “bat” “chiroptera”

• polysemies are mapped onto different locations

• “bat” (baseball) vs. “bat” (small furry mammal)

� U V T

Latent Semantic Indexing - Linear Algebra Refresher

• Computing SVD takes a significant amount of CPU

• It is possible to add documents to a corpus without

recalculating SVD

• The result becomes an approximation

• To get mathematical guarantees the whole SVD needs to

be computed from scratch

• LSI doesn’t support negation queries

• LSI doesn’t support boolean queries

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• “I am not crazy”

• Netflix

Matrix Decomposition

Latent Semantic Indexing - Linear Algebra Refresher

• “I am not crazy”

• Netflix

• Machine translations

• Just like “bat” and “chiroptera” map the same

• “bat” and “murciélago” can map to the same thing

next...

VECTOR SPACE SCORING
Introduction to
Information Retrieval
CS 150
Donald J. Patterson

Content adapted from Hinrich Schütze
http://www.informationretrieval.org

http://www.informationretrieval.org

VECTOR SPACE MODEL
• Define: Vector Space Model

• Representing a set of documents as vectors in a

common vector space.

• It is fundamental to many operations

• (query,document) pair scoring

• document classification

• document clustering

• Queries are represented as a document

• A short one, but mathematically equivalent

VECTOR SPACE SCORING

VECTOR SPACE MODEL
• Define: Vector Space Model

• A document, d, is defined as a vector:

• One component for each term in the dictionary

• Assume the term is the tf-idf score

• A corpus is many vectors together.

• A document can be thought of as a point in a

multi-dimensional space, with axes related to

terms.

⇤V (d)

�V (d)t = (1 + log(tft,d)) � log

�
|corpus|

dft,d

⇥

VECTOR SPACE SCORING

• Recall our Shakespeare Example:

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

⇤V (d1) ⇤V (d2) ⇤V (d6)

⇤V (d6)7

VECTOR SPACE MODEL

VECTOR SPACE SCORING

• Recall our Shakespeare Example:

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

⇤V (d1) ⇤V (d2) ⇤V (d6)

VECTOR SPACE MODEL

VECTOR SPACE SCORING

• Recall our Shakespeare Example:

Antony

Brutus

Antony and Cleopatra

Julius Caesar

Tempest
Hamlet

Othello
MacBeth

VECTOR SPACE MODEL

VECTOR SPACE SCORING

• Recall our Shakespeare Example:

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

⇤V (d1) ⇤V (d2) ⇤V (d6)

VECTOR SPACE MODEL

VECTOR SPACE SCORING

• Recall our Shakespeare Example:

Hamlet

Antony and Cleopatra

Julius Caesar

Tempest
Othello

MacBeth

mercy

worser

VECTOR SPACE MODEL

VECTOR SPACE SCORING

• So a query can also be plotted in the same space

• “worser mercy”

• To score, we ask:

• How similar are two points?

• How to answer?
Hamlet

Antony and Cleopatra

Julius Caesar

Tempest
Othello

MacBeth

mercy

worser

query

QUERY AS A VECTOR

VECTOR SPACE SCORING

SCORE BY MAGNITUDE
• How to answer?

• Similarity of magnitude?

• But, two documents, similar in

content, different in length can

have large differences in

magnitude.

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

VECTOR SPACE SCORING

SCORE BY ANGLE
• How to answer?

• Similarity of relative positions, or

• difference in angle

• Two documents are similar if the

angle between them is 0.

• As long as the ratios of the axes

are the same, the documents will

be scored as equal.

• This is measured by the dot

product

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

VECTOR SPACE SCORING

• Rather than use angle

• use cosine of angle

• When sorting cosine and angle

are equivalent

• Cosine is monotonically

decreasing as a function of

angle over (0 ... 180)

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

SCORE BY ANGLE

VECTOR SPACE SCORING

BIG PICTURE
• Why are we turning documents and queries into

vectors

• Getting away from Boolean retrieval

• Developing ranked retrieval methods

• Developing scores for ranked retrieval

• Term weighting allows us to compute scores for

document similarity

• Vector space model is a clean mathematical model to

work with

VECTOR SPACE SCORING

BIG PICTURE
• Cosine similarity measure

• Gives us a symmetric score

• if d_1 is close to d_2, d_2 is close to d_1

• Gives us transitivity

• if d_1 is close to d_2, and d_2 close to d_3, then

• d_1 is also close to d_3

• No document is closer to d_1 than itself

• If vectors are normalized (length = 1) then

• The similarity score is just the dot product (fast)

VECTOR SPACE SCORING

QUERIES IN THE VECTOR SPACE MODEL
• Central idea: the query is a vector

• We regard the query as a short document

• We return the documents ranked by the closeness of

their vectors to the query (also a vector)

• Note that q is very sparse!

sim(q, di) =
�V (q) · �V (di)
|�V (q)||�V (di)|

VECTOR SPACE SCORING

COSINE SIMILARITY SCORE
• Also called cosine similarity

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

~

V (d1) · ~

V (d2) = cos(✓)|~V (d1)||~V (d2)|

cos(✓) =
~

V (d1) · ~

V (d2)
|~V (d1)||~V (d2)|

sim(d1, d2) =
~

V (d1) · ~

V (d2)
|~V (d1)||~V (d2)|

VECTOR SPACE SCORING

• Define: dot product

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

⇤V (d1) · ⇤V (d2) =
tn�

i=t1

(⇤V (d1)i
⇤V (d2)i)

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

⌅V (d1) · ⌅V (d2) = (13.1 ⇥ 11.4) + (3.0 ⇥ 8.3) + (2.3 ⇥ 2.3) + (0 ⇥ 11.2) + (17.7 ⇥ 0) + (0.5 ⇥ 0) + (1.2 ⇥ 0)

= 179.53

COSINE SIMILARITY SCORE

VECTOR SPACE SCORING

• Define: Euclidean Length

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|�V (d1)| =

⌅⇤⇤⇥
tn�

i=t1

(�V (d1)i
�V (d1)i)

|⌅V (d1)| =
�

(13.1 � 13.1) + (3.0 � 3.0) + (2.3 � 2.3) + (17.7 � 17.7) + (0.5 � 0.5) + (1.2 � 1.2)
= 22.38

COSINE SIMILARITY SCORE

VECTOR SPACE SCORING

• Define: Euclidean Length

|�V (d1)| =
�

(11.4 � 11.4) + (8.3 � 8.3) + (2.3 � 2.3) + (11.2 � 11.2)
= 18.15

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

Antony and Julius The Tempest Hamlet Othello Macbeth
Cleopatra Caesar

Antony 13.1 11.4 0.0 0.0 0.0 0.0
Brutus 3.0 8.3 0.0 1.0 0.0 0.0
Caesar 2.3 2.3 0.0 0.5 0.3 0.3

Calpurnia 0.0 11.2 0.0 0.0 0.0 0.0
Cleopatra 17.7 0.0 0.0 0.0 0.0 0.0

mercy 0.5 0.0 0.7 0.9 0.9 0.3
worser 1.2 0.0 0.6 0.6 0.6 0.0

|�V (d1)| =

⌅⇤⇤⇥
tn�

i=t1

(�V (d1)i
�V (d1)i)

COSINE SIMILARITY SCORE

VECTOR SPACE SCORING

• Example

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

sim(d1, d2) =
�V (d1) · �V (d2)
|�V (d1)||�V (d2)|

=
179.53

22.38 � 18.15
= 0.442

COSINE SIMILARITY SCORE

VECTOR SPACE SCORING

EXERCISE
• Rank the following by decreasing cosine similarity.

• Assume tf-idf weighting:

• Two docs that have frequent words in common

• (the, a , an, of) (same number of each)

• Two docs that have no words in common

• Two docs that have many rare words in common

• (mocha, volatile, organic, shade-grown)

VECTOR SPACE SCORING

EXERCISE
VECTOR SPACE SCORING

EXERCISE
VECTOR SPACE SCORING

More of
the same

EXERCISE
VECTOR SPACE SCORING

More of
the same

EXERCISE
VECTOR SPACE SCORING

EXERCISE

More of
the same

VECTOR SPACE SCORING

More of
the same

EXERCISE

VECTOR SPACE SCORING

• Rank the following by decreasing cosine

similarity.

• Assume tf-idf weighting:

• Two docs that have frequent words in

common

• (the, a , an, of)

• Two docs that have no words in common

• Two docs that have many rare words in

common

• (mocha, volatile, organic, shade-grown)

EXERCISE

VECTOR SPACE SCORING

SPAMMING INDICES
• This was invented before spam

• Consider:

• Indexing a sensible passive document collection

• vs.

• Indexing an active document collection, where

people, companies, bots are shaping documents to

maximize scores

• Vector space scoring may not be as useful in this

context.

VECTOR SPACE SCORING

INTERACTION: VECTORS AND PHRASES
• Scoring phrases doesn’t naturally fit into the vector

space world:

• How do we get beyond the “bag of words”?

• “dark roast” and “pot roast”

• There is no information on “dark roast” as a phrase

in our indices.

• Biword index can treat some phrases as terms

• postings for phrases

• document wide statistics for phrases

VECTOR SPACE SCORING

INTERACTION: VECTORS AND PHRASES
• Theoretical problem:

• Axes of our term space are now correlated

• There is a lot of shared information in “light roast”

and “dark roast” rows of our index

• End-user problem:

• A user doesn’t know which phrases are indexed and

can’t effectively discriminate results.

VECTOR SPACE SCORING

MULTIPLE QUERIES FOR PHRASES AND VECTORS
• Query: “rising interest rates”

• Iterative refinement:

• Run the phrase query vector with 3 words as a term.

• If not enough results, run 2-phrase queries and fold

into results: “rising interest” “interest rates”

• If still not enough results run query with three words

as separate terms.

VECTOR SPACE SCORING

VECTORS AND BOOLEAN QUERIES
• Ranked queries and Boolean queries don’t work very well together

• In term space

• ranked queries select based on sector containment - cosine

similarity

• boolean queries select based on rectangle unions and

intersections

�V (d1)

�V (d2)

�V (d3)

�V (d4)
�V (d5)

�

�V (d1) �V (d2)

�V (d3)

X � Y

VECTOR SPACE SCORING

VECTORS AND WILD CARDS
• How could we work with the query, “quick* print*” ?

• Can we view this as a bag of words?

• What about expanding each wild-card into the

matching set of dictionary terms?

• Danger: Unlike the boolean case, we now have tfs and

idfs to deal with

• Overall, not a great idea

VECTOR SPACE SCORING

VECTORS AND OTHER OPERATORS
• Vector space queries are good for no-syntax, bag-of-

words queries

• Nice mathematical formalism

• Clear metaphor for similar document queries

• Doesn’t work well with Boolean, wild-card or

positional query operators

• But ...

VECTOR SPACE SCORING

QUERY LANGUAGE VS. SCORING
• Interfaces to the rescue

• Free text queries are often separated from operator

query language

• Default is free text query

• Advanced query operators are available in “advanced

query” section of interface

• Or embedded in free text query with special syntax

• aka -term -”terma termb”

VECTOR SPACE SCORING

ALTERNATIVES TO TF-IDF
• Sublinear tf scaling

• 20 occurrences of “mole” does not indicate 20 times

the relevance

• This motivated the WTF score.

• There are other variants for reducing the impact of

repeated terms

WTF(t, d)
1 if tft,d = 0
2 then return(0)
3 else return(1 + log(tft,d))

VECTOR SPACE SCORING

TF NORMALIZATION
• Normalize tf weights by maximum tf in that document

• alpha is a smoothing term from (0 - 1.0) ~0.4 in

practice

• This addresses a length bias.

• Take one document, repeat it, WTF goes up

• this score reduces that impact

ntft,d = � + (1� �)
tft,d

tfmax(d)

VECTOR SPACE SCORING

TF NORMALIZATION
• Normalize tf weights by maximum tf in that document

• a change in the stop word list can change weights

drastically - hard to tune

• still based on bag of words model

• one outlier word, repeated many times might

throw off the algorithmic understanding of the

content

ntft,d = � + (1� �)
tft,d

tfmax(d)

VECTOR SPACE SCORING

LAUNDRY LIST
Term Frequency Document Frequency Normalization

(n)atural tft,d (n)o 1 (n)one 1
(l)ogarithm 1 + log(tft,d) (t)idf log |corpus|

dft
(c)osine 1⇤

w12+w22+...+wm
2

(a)ugmented � + (1� �) tft,d

tfmax(d) (p)robidf max{0, log(|corpus|�dft
dft

) (u)pivoted 1/u

(b)oolean tft,d > 0?1 : 0 (b)yte 1/CharLength�,� < 1
(L)ogaverage 1+log(tft,d)

1+log(avet�d(tft,d))

• SMART system of describing your IR vector algorithm

• ddd.qqq (ddd = document weighting) (qqq = query

weighting)

• first is term weighting, second is document, then

normalization

• ltc.ltc is what?

VECTOR SPACE SCORING

EFFICIENT COSINE RANKING
• Find the k docs in the corpus “nearest” to the query

• the k largest query-doc cosines

• Efficient ranking means:

• Computing a single cosine efficiently

• Computing the k largest cosine values efficiently

• Can we do this without computing all n cosines?

• n = number of documents in corpus

VECTOR SPACE SCORING

EFFICIENT COSINE RANKING
• Computing a single cosine

• Use inverted index

• At query time use an array of accumulators Aj to

accumulate component-wise sum (incremental dot-

product)

• Accumulate scores as postings lists are being

processed (numerator of similarity score)

Aj =
�

t

(wq,twd,t)

VECTOR SPACE SCORING

EFFICIENT COSINE RANKING
• For the web

• an array of accumulators in memory is infeasible

• so only create accumulators for docs that occur in

postings list

• dynamically create accumulators

• put the tfidf scores in the postings lists themselves

• limit docs to non-zero cosines on rare words

• or non-zero cosines on all words

• reduces number of accumulators

VECTOR SPACE SCORING

EFFICIENT COSINE RANKING

CosineScore(q)
1 Initialize(Scores[d ⇤ D])
2 Initialize(Magnitude[d ⇤ D])
3 for each term(t ⇤ q)
4 do p⇥ FetchPostingsList(t)
5 dft ⇥ GetCorpusWideStats(p)
6 �t,q ⇥WeightInQuery(t, q, dft)
7 for each {d, tft,d} ⇤ p
8 do Scores[d] + = �t,q · WeightInDocument(t, q, dft)
9 for d ⇤ Scores

10 do Normalize(Scores[d],Magnitude[d])
11 return top K ⇤ Scores

VECTOR SPACE SCORING

USE HEAP FOR SELECTING THE TOP K SCORES
• Binary tree in which each node’s value > the values of

children

• Takes 2N operations to construct

• then each of k “winners” read off in 2logn steps

• For n =1M, k=100 this is about 10% of the cost of

sorting

• Java “TreeMap” for example

VECTOR SPACE SCORING

