
GENERICS IN JAVA
Computer Science II
CS 030
Donald J. Patterson

GENERICS FROM 10,000 FEET

• Generics enable types (classes and interfaces) to be

parameterized.

• The input to Generics are types

• The output of Generics are new types

• They are like parameters in methods

• but they are about types, not data, not values

• they are meta-data

• They let you re-use the same code with different inputs.

http://docs.oracle.com/javase/tutorial/java/generics/why.html

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET

• Benefits:

• Write less code (code re-use)

• They enable programmers to implement generic

algorithms once (less bugs)

• Stronger type checks at compile time.

• More errors are found at compile-time through static

checking

http://docs.oracle.com/javase/tutorial/java/generics/why.html

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET

http://docs.oracle.com/javase/tutorial/java/generics/why.html

bytecode.jar

code.java:

class Foo{
 /*does things */
}

I DE

compiler distribution Java Virtual Machine
great things

happen

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET
• Elimination of casts.

• The following code snippet without generics requires casting:

• When re-written to use generics, the code does not require

casting:

http://docs.oracle.com/javase/tutorial/java/generics/why.html

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0); // no cast

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET

Data Structures in Java, for the Principled Programmer

• Questions:

• What does the code on the left do?

• What is different about the code on the right?

• Is the code syntactically correct?

http://dept.cs.williams.edu/~bailey/JavaStructures/Book.html

GENERICS FROM 10,000 FEET

• Questions:

• What does the code on the left do?

• What is different about the code on the right?

• Is the code syntactically correct?

• Let’s try it

Data Structures in Java, for the Principled Programmer

http://dept.cs.williams.edu/~bailey/JavaStructures/Book.html

GENERICS FROM 10,000 FEET

http://docs.oracle.com/javase/tutorial/java/generics/why.html

bytecode.jar

code.java:

class Foo{
 /*does things */
}

I DE

compiler distribution Java Virtual Machine
great things

happen

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET

• Questions:

• What is different about the code with Generics?

Data Structures in Java, for the Principled Programmer

http://dept.cs.williams.edu/~bailey/JavaStructures/Book.html

GENERICS FROM 10,000 FEET

• Questions:

• What happened to the code on the right?

Data Structures in Java, for the Principled Programmer

http://dept.cs.williams.edu/~bailey/JavaStructures/Book.html

GENERICS FROM 10,000 FEET

http://docs.oracle.com/javase/tutorial/java/generics/why.html

bytecode.jar

code.java:

class Foo{
 /*does things */
}

I DE

compiler distribution Java Virtual Machine
great things

happen

http://docs.oracle.com/javase/tutorial/java/generics/why.html

GENERICS FROM 10,000 FEET

http://docs.oracle.com/javase/tutorial/java/generics/why.html

• Here’s what’s cool:

• When the developer made the Vector class they had no

idea that I was going to use it with Strings

• I could have used it with some other class

http://docs.oracle.com/javase/tutorial/java/generics/why.html

• Components of a method signature

• visibility

• return type

• name

• full name would include the class (and the package)

• Identity.setPassword

• parameter list

• parameter type

• parameter name

• Generics are a small language within a language for

declaring types

• Let’s work through one

• We are clever hackers and we want to let people have first

and last names

• But we also know that we can use this for more than just

names

• Let’s abstract it into a general Pair

• Mission Accomplished!

• Word has spread far and wide and now we’ve been hired

by an EMR company

• They want us to add BMI to our Identity class

• That’s a height and weight combo

• Hey! That sounds like another Pair!

• We’ve already done that right?

• Hmm…

• That’s easy enough to fix. Let’s just make another Pair

class…

• Conceptually our Pair class is agnostic to what kind of type

gets used with it

• it doesn’t really matter

• But the Java language is tying our hands

• But we are stuck having to define a new class for every single

application that needs a different type

• Enter Generics

• Generics let you manipulate parameters without knowing their

type, but without losing static type checking in the compiler

• Now, mission accomplished

• That’s 80% of everything to know about Generics

• It’s basically that easy, but there are some details that

you need to know

• The final 20%….

• You can’t plug in a primitive type to a Generic

• You can’t use a Generic in an Array (it’s primitive)

Generics and primitive types don’t play well together

• When writing a Generic you actually have a little more

control over how a developer uses it

Sometimes you care just a little bit about the type

• How could you make a Quad?

Generics can be extended

• You cannot inherit just a portion of a type

Generic Types are Atomic

Object someObject = new Object();
Integer someInteger = new Integer(10);
someObject = someInteger; // OK

http://docs.oracle.com/javase/tutorial/java/generics/inheritance.html

public void someMethod(Number n) { /* ... */ }

someMethod(new Integer(10)); // OK
someMethod(new Double(10.1)); // OK

Integer foo = new Integer(10);
Double bar = new Double(10.1);
PairGeneric<Number,Number> p= new PairGeneric<Number,Number>(foo,bar);

http://docs.oracle.com/javase/tutorial/java/generics/why.html

• You cannot inherit just a portion of a type

Generic Types are Atomic

http://docs.oracle.com/javase/tutorial/java/generics/inheritance.html

public Double sum(Vector<Number> v) {
double running = 0.0;
for(int i = 0 ; i < v.size(); i++){

running += v.get(i).doubleValue();
}
return running;

}

Number

Double

Object

Vector<Number>

Vector<Double>

Vector<Object>
Object

Vector<Number> Vector<Double>

http://docs.oracle.com/javase/tutorial/java/generics/why.html

Work it out

• Will the following code compile?

public class Algorithm{
 public T max(T x, T y) {
 return x > y ? x : y;
 }
}

Generics from 10,000 feet

• Generics enable types (classes and interfaces) to be

parameterized.

• The input to Generics are types

• The output of Generics are new types

• They are like parameters in methods

• but they are about types, not data, not values

• they are meta-data

• They let you re-use the same code with different inputs.

http://docs.oracle.com/javase/tutorial/java/generics/why.html

http://docs.oracle.com/javase/tutorial/java/generics/why.html

Generics from 10,000 feet

• Benefits:

• Write less code (code re-use)

• Enabling programmers to implement generic

algorithms.

• Stronger type checks at compile time.

• More errors are found at compile-time through static

checking

http://docs.oracle.com/javase/tutorial/java/generics/why.html

http://docs.oracle.com/javase/tutorial/java/generics/why.html

