
Computer Science 010: Design and Implementation of
Solutions to Computational Problems

Assignment 9

This is an assignment that may be done individually or as a pair. If you would like to work in a
pair, you are responsible for finding a partner. If you work with a partner only one person should
turn in an answer and the comments should indicate both people whose work it represents.

Program #1 (50%)
Assignment:

Implement a class Car with the following properties:

A car has a certain fuel efficiency (measured in miles/gallon) and a certain amount of
fuel in the gas tank. The efficiency is specified in the constructor, and the initial fuel level is 0.

Supply a method drive that simulates driving the car for a certain distance, reducing
the fuel level in the gas tank, and methods getGasLevel, to return the current fuel level, and
addGas, to tank up.

If driving the car results in running out of gas, then your method should raise a
ValueError exception with the appropriate message.

Sample usage 1:

from Car import Car
myHybrid = Car(50) # 50 miles per gallon
myHybrid.addGas(20) # Tank 20 gallons
myHybrid.drive(100) # Drive 100 miles
print(myHybrid.getGasLevel()) # Print fuel remaining -> 18

Sample usage 2:

from Car import Car
myHybrid = Car(50) # 50 miles per gallon
myHybrid.addGas(1) # Tank 1 gallons
myHybrid.drive(100) # Drive 100 miles
<Exception “You ran out of gas”>

You will turn in a file Car.py which contains just the class definition I will test by running
a program like the samples above

Program #2 (50%)
Assignment:

Implement a class ComboLock that works like the combination lock in a gym locker, as
shown here:

The lock is constructed with a combination—three numbers between 0 and 39.
The reset method resets the dial so that it points to 0.
The turnLeft and turnRight methods turn the dial by a given number of ticks to the

left or right.
The open method attempts to open the lock.
The lock opens if the user first turned it right to the first number in the combination, then

left to the second, and then right to the third.

Here is a stub that you should complete:

class ComboLock :
 def ComboLock(self, secret1, secret2, secret3) :
 . . .
 def reset(self) :
 . . .
 def turnLeft(self, ticks) :
 . . .
 def turnRight(self, ticks) :
 . . .

 #Returns True or False
 def open(self) :
 . . .

You will turn in a file ComboLock.py which contains just the class definition I will test by
running a program that uses it like this one:

from ComboLock import ComboLock
myLock = ComboLock(10,20,10)
myLock.reset()
myLock.turnRight(30)
myLock.turnLeft(10)
myLock.turnRight(10)
if(myLock.open() == True):
 print(“The lock opened”) #Correct outcome
else:
 print(“The lock didn’t open”)

myLock.reset()
myLock.turnLeft(30)
myLock.turnRight(10)
myLock.turnLeft(10)
if(myLock.open() == True):
 print(“The lock opened”)
else:
 print(“The lock didn’t open”) #Correct outcome

