
I

I

I

26 Chapter 1 Introduction

4. In secondary storage, typically a hard disk.

5. The central processing unit.

6. (1) It would be very tedious to do so.
(2) Programs that are written for one CPU are
not portable to a different CPU type.

7. Ease of use and portability.

8. The answer varies among systems. A typical
answer might be /home/dave/csl/hel lo/hello. py
or c:\Users\Dave\Workspace\hello\hello. py

9. You back up your files and folders.

1 O. Change World to your name (here, Dave):

print("Hello, Dave!")

11. print("H")
print("e")
print("l ")
print("l ")
print("o")

12. No. The interpreter would look for an
item whose name is He 11 o. You need to
enclose He 11 o in quotation marks:

print("Hello")

13. My lucky numbers are 17 29

14. Hello
a blank line
World

1 5. This is a compile-time error at the point of the
! symbol.

16. This is a compile-time error at the point of the
{ symbol.

17. This is a compile-time error. The interpreter
will either complain of an indentation error or
a syntax error because plain sentences cannot
be used as instructions.

18. It is a run-time error. After all, the program
had been compiled in order for you to run it.

19. When a program has compile-time errors, the
interpreter stops translating the instructions
and does not execute the program.

20. 4 years:

0 10,000

1 12,000

2 14,400

3 17,280

4 20,736

21. Is the number of minutes at most 300?

a. If so, the answer is $29.95 x 1.125 = $33.70.

b. If not,

1. Compute the difference: (number of
minutes)- 300.

2. Multiply that difference by 0.45.

3. Add $29.95.

4. Multiply the total by 1.125. That is the
answer.

22. No. The step If it is more attractive than the "best
so far" is not executable because there is no
objective way ?f deciding which of two photos
is more attractive.

23. Pick the first photo and call it "the most expensive so far".
For each photo in the sequence

If it is more expensive than "the most expensive so far"
Discard "the most expensive so far".
Call this photo "the most expensive so far".

The photo called "the most expensive so far" is the most
expensive photo in the sequence.

24. The first black marble that is preceded by a
white one is marked in blue:

oeo••

Switching the two yields

eoo••

The next black marble to be switched is

eoo••

yielding

•o•o•

The next steps are

eeoo•

••o•o

•••oo

Now the sequence is sorted.

2 5. The sequence doesn't terminate. Consider the
input oeoeo. The first two marbles keep
getting switched.

,,.

�
CHAPTER 2

PROGRAMMING

WITH NUMBERS

AND STRINGS

© samxmeg/iStockphoto.

To define and use variables and constants

To understand the properties and limitations of integers and floating-point numbers

To appreciate the importance of comments and good code layout

To write arithmetic expressions and assignment statements

To create programs that read and process inputs, and display the results

To learn how to use Python strings

To create simple graphics programs using basic shapes and text

f CHAPTER CONTENTS

2.1 VARIABLES 28

Syntax 2. T: Assignment 29

Common Error 2. T: Using Undefined

Variables 34

Programming Tip 2. T: Choose Descriptive

Variable Names 34

Programming Tip 2.2: Do Not Use

Magic Numbers 35

2.2 ARITHMETIC 3 5

Syntax 2.2: Calling Functions 38

Common Error 2.2: Roundoff Errors 41

Common Error 2.3: Unbalanced Parentheses 41

Programming Tip 2.3: Use Spaces in

Expressions 42

Special Topic 2. T: Other Ways to Import

Modules 42

Special Topic 2.2: Combining Assignment and

Arithmetic 42

Special Topic 2.3: Line Joining 43

2.3 PROBLEM SOLVING: FIRST DO IT

BY HAND 43

Worked Example 2. T: Computing Travel Time 45

2.4 STRINGS 46

Special Topic 2.4: Character Values 51

Special Topic 2.5: Escape Sequences 52

Computing & Society 2. T: International Alphabets

and Unicode 52

2.5 INPUT AND OUTPUT 53

Syntax 2.3: String Format Operator 55

Programming Tip 2.4: Don't Wait to Convert 58

How To 2. T: Writing Simple Programs 58

Worked Example 2.2: Computing the Cost

of Stamps 61

Computing & Society 2.2: The Pentium Floating·

Point Bug 63

2.6 GRAPHICS: SIMPLE DRAWINGS 63

How To 2.2: Graphics: Drawing Graphical

Shapes 70

Toolbox 2. T: Symbolic Processing with

SymPy 73

© samxmeg/iStockphoto.

A va riable is a
storage location
with a name.

28

Numbers and character strings (such as the ones on this
display board) are important data types in any Python
program. In this chapter, you will learn how to work with
numbers and text, and how to write simp le programs that
perform useful tasks with them.

When you r program carries out computations, you will want to store values so th at
you can u se them later. In a Python program, you use variables to store values. In this
section, you will learn how to define and use variables.

To illustr ate the use of variables , we
will develop a program that solves the
following probl em. Soft drinks are sold
in cans and bottles. A store offers a six­
pack of 12-ounce cans for the same price
as a two-liter bottle. Which shou ld yo u
buy? (Twelve fluid ounces equal approx­
imately 0.355 liters.)

In our program, we will define var i­
ables for the number of cans per pack
and for the volume of each can. Then we
will compute the volume of a six-pack in What contains more soda? A six -pack of
lit ers and print out the answer. I 2-ounce cans or a t wo-liter bottle?

2 .1 .1 Defining Variables

A variable is a storage location in a compute r program . Each variable has a n ame and
holds a value.

A variable is similar to a p arking space in a parkin g garage. The parking space has
an identifier (such as "J 053"), and it can h old a vehicle. A variable has a name (such as
cansPe rPack), and it can hold a value (such as 6).

Like a variable in a comp uter
program, a parking space has
an identifie r and a contents.

•
2.1 Variables 29

Syntax 2. 1 Assignment

An assi gnment
sta tem ent stores a
value in a variable.

A va riab le is created
the first time it is
ass igned a value .

Assigning a va lue
to an existing
variab le replaces
the previo usly
sto red value.

The assign ment
ope rator= does not
denot e mathematical
equa lity.

Syntax variableName = va lue

A variable is defined
the first time it

is assigned a value.

total = 0 ./1 Names of previously
/" / defined variables

t otal= bottles * BOTTLE_VOLUME

The expression that replaces the previous value

total = total+ cans* CAN_VOLUME

The same name ~
can occur on both sides. Names of previously

See Figure 2. defined variables

You use the assignment statement to place a value into a var iable. Here 1s an
example

cansPerPack = 6 C, ~
The left-hand side of an assignment statement consists of a var iable. The right-hand
side is an expression that has a value. That valu e is stored in the variable.

The first tim e a variable is assigned a value , th e variable is created and initialized
with that value. Aft er a variabl e has been defined, it can be used in other statements.
For example,

print(can s PerPa ck)

will print the value stored in the variable cansPerPack .

If an existing variable is assigned a new value, th at value repla ces th e previous con­
tents of the variab le. For examp le,

cansPerPack = 8 ~

changes the value conta in ed in var iable cansPerPack from 6 to 8. Figure 1 illustrates the
two assignment statements used above .

Th e = sign does not mean that th e left -hand side is equal to th e right -h and side.
Instead, the valu e on the right-h and side is placed into the varia ble on the left.

Do not confus e this assignment operator with the = used in algebra to denot e
equalit y. Assignment is an instruction to do something-namely, place a value into a
variable .

0 Because this is the first assignme nt,
the variab le is created.

f) The variab le is initializ ed. The second assignment overwrites
the stored value.

cansPerPack cansPerPack = 6 cansPerPack = 8

Figure 1 Executing Two Assignm ent s

h1i
I I

I
I

I !
I

30 Chapter 2 Programming with Numbers and Strings

The data type of a
value specifies how
the value is stored
in the computer and
what ope rations
can be performed on
the value.

Integers are whole
numb ers witho ut a
fractiona l part.

Floating-point
numb ers contain a
fractiona l part.

Figure 2
Executing the Assignment
can s PerPack = cansPerPack + 2

0 Compute rhe value of rhe rigbr-band side

ca nsPerPack =

can s PerP a ck + 2

~
10

f) Store the value in rhe variable)

ca ns Pe r Pack = 1~

For exampl e, in Python, it is perf ectly legal to w rite

cansPerP ack = cansPe r Pack + 2

The second stat ement means to look up the value stored in the vari able cans PerPac k,
add 2 to it , and pl ace th e re sult back in to cansPe rPack. (See Figur e 2.) The net effect of
executin g thi s statement is to in crement cansPerP ac k by 2. If can s PerPa ck wa s 8 before
execution of the statement , it is set to 10 afterwards. O f cour se, in math emati cs it
wo uld make no sense to w rite that x = x + 2. No value can equ al itself plus 2.

2. l .2 Number Types

Co mpu ters manipul ate data values th at represent in form ation and the se value s can
be of different type s. In fact, each value in a Py thon pro gram is of a specific type . Th e
data type of a value dete rmin es ho w th e data is repr esent ed in th e computer and wha t
op erat ions can be p erformed on that data. A data typ e pro vided by the language it self
is called a primitive data type. Pyt hon supp orts quit e a few data type s: numb ers, text
strin gs, files, cont ainers, and many ot hers . Pro gram me rs can also define their own
user-defined data types , whi ch we w ill cover in detail in Chap ter 9.

In Pyth on , th ere are several differe nt types of numb ers. An inte ger valu e is a w hole
numb er w ithout a frac tional par t. For example, there mu st be an int ege r numbe r of
cans in any pack of cans-you cann ot h ave a fr action of a can. In Py th on, thi s type
is called i nt. W hen a fract ional part is requir ed (such as in th e numb er 0.355) , we use
floatin g-point numb ers, w hich are called fl oat in Pyt hon.

When a valu e such as 6 or 0.355 occur s in a Py thon pro gram, it is called a numbe r
literal. If a numb er lit eral h as a decimal point , it is a floatin g-point numb er; oth er­
w ise, it is an integer . Table 1 shows how to w rit e int eger and floatin g-p oint literals in
Py th on.

A variable in Pyth on can sto re a value of any typ e. Th e dat a typ e is assoc iated w ith
th e value , not th e variable. For examp le, con sider thi s variable that is initi alized w ith
a value of typ e i nt :

tax Rat e = 5

Th e same variable can later hold a valu e of type fl oat :

t axRat e = 5. 5

h

Once a variable is
initia lized with a
value of a particular
type, it should
always st ore values
of that same type.

Number

6

-6

0

0.5

1. 0

l EG

2.96E-2

(S) 100,000

(S) 3 1/ 2

2 . 1 Variable s

Table 1 Number Literals in Pytho n

Type

int

int

int

fl oat

float

fl oat

float

Comment

An integer bas no fractional part .

Integer s can be negative.

Zero is an integer .

A number with a fractional part has type fl oat .

An in teger wi th a fractional part .0 has type float .

A numbe r in exponential notation: 1 x 106 or 1000000.
Numbers in exponential notation always have type float.

Negative exponent: 2.96 x 10-2 = 2.96 I 100 = 0.0296

Error: Do no t use a comma as a decimal separator.

Error: Do not use fractions ; use decimal notation : 3.5.

It could even hold a strin g:

ta xRate = "Non- ta xable" # N ot recommended

31

How ever, th at is not a good ide a. If you use the variabl e and it cont ains a value of an
un expected type, an error will occur in yo ur pro gram. Inste ad, on ce yo u have initial­
ized a variabl e with a valu e of a p articul ar typ e, yo u shou ld ta ke car e that yo u keep
storin g values of th e same typ e in th at variable.

Fo r exampl e, be cau se tax rates are n ot necessa rily int egers, it is a goo d idea to ini ­
tialize th e taxRate var iable with a floatin g-p oint value, even if it happe ns to be a w h ole
num ber :

taxRat e = 5. 0 # Tax rates can have fract ional parts

Thi s h elps yo u remem ber that t ax Rate can cont ain a float ing-point value , even thou gh
th e initi al value has n o fr action al part .

2. l .3 Variable Names

When yo u defin e a variable , you need to give it a name that explain s its purpo se.
Wh enever you name somethin g in Pyth on, yo u mu st fo llow a few simpl e rul es:

l. Nam es mu st start with a lett er or th e und ersco re (_) characte r, and the rem ain­
in g characters mu st be lett ers, numb ers, or und ersco res.

2. You cannot use oth er symb ols such as ? or%. Sp aces
are no t permitt ed insid e names eith er. You can use
upp ercase lette rs to den ot e wo rd bound aries, as in
cansPer Pack . Thi s namin g convention is called camel
case because the upper case lette rs in the middl e of
the nam e look lik e the hump s of a cam el.

32 Chapter 2 Programming with Numbers and Strings

Variab le Name

canVolumel

X

6 CanVolume

(S) 6pack

(S) can volume

(S) class

(S) ltr / fl .oz

By convention,
variab le names
should start with a
lowercase lett er.

Use constants for
values that should
remain unchanged
throughout your
program.

Table 2 Variable Names in Python

Comment

Variable names consist of lett ers, numbers, and the under score charac ter.

In mathematics, you use short variable names such as x or y . Thi s is legal in Python, but
not very common , because it can make programs harder to understand (see Pro grammin g
Tip 2.1 on page 34).

Caution: Variable names are case sensitive. This variable name is differ ent from canVo l ume,

and it violates the convention that variable names sho uld start with a lowercase letter.

Error: Variable names cannot start with a number.

Error: Variable names cannot contain spaces.

Error: You cannot use a reserved word as a variab le name.

Error : You cannot use symbols such as . or / .

3 . Names are case sensitive, that is, can Vol ume and can vol ume are different nam es.

4 . You cannot use rese rved words such as if or cl ass as names; these words are
reserved exclusively for their special Python meanings. (See Appe ndi x B for a
listing of all reserved words in Py thon.)

Th ese are firm rules of the Py thon language . There are two "ru les of good taste" that
you should also respect.

1. It is better to use a descriptive name, such as cansPerPack, than a terse name, such
as cpp .

2 . Most Python prog ramme rs use names for variables that start with a lower case
lette r (such as cansPerPack). In contra st, names that are all upper case (such as
CAN_VOLUME) indic ate constant s. Names that sta rt with an uppercase letter are
commonl y used for user-defined dat a types (such as Graphi csWi ndow).

Table 2 show s examples of legal and illegal variable names in Pyt hon.

2 .1 .4 Constants

A constant variable, or simply a constant , is a variable wh ose value should not be
changed after it has been assigned an initi al value . Some languages provide an explicit
mechani sm for marking a variable as a const ant and will generate a syntax error if yo u
atte mpt to assign a new value to the variable. Python leaves it to th e programmer to
make sure that constants are not changed . Thu s, it is common practice to specify a
constant variable wit h the use of all capital letters for its name.

BOTTLE_VOLUME = 2.0
MAX_SIZE = 100

By follo wing thi s convention, you pro vide information to yourself and others that
you intend for a var iable in all capital lette rs to be constant throu ghout the program.

It is good programming style to use nam ed con stants in yo ur pro gram to explain
num eric values.

-

Use comments to
add explanations
for huma ns who
read your code. The
inte rp reter ignores
comme nts.

For examp le, compare the statements

totalVolume =bottles* 2

and

totalVolume =bottles* BOTTLE_VOLUME

2.1 Variables 33

A programmer reading the first statement may not understand the significance of
the number 2. The second statement, with a named constant, makes the computation
much clearer.

2.1.5 Comments

As you r programs get more complex, you shou ld
add comments, explanations for hum an readers
of your code. For examp le, here is a comment that
explains the value used in a constant:

CAN_VOLUME = 0 . 355 # Liter s in a 12-ounce can

This comment explains the significance of the value
0.355 to a human reader . The interpreter do es not
execute comments at all. It ignores everything from a
delimiter to the end of th e line.

It is a good practice to provide comments. This
helps programm ers who read your code underst and
your intent . In additi on, you will find comments
helpful when you review your own programs. Pro­
vide a comment at the top of your source file th at
explains the purpo se of the pro gram. In the text­
book, we use the follo wing style for these comment s,

0
0
..c:
a.

-"' u
0
vi
~
::l e
.2Q
@

Just as a television commenta­
tor explains the news, you use
comments in your program to
explain its behavior.

This program computes the volume (in liter s) of a six-pack of sod a cans .

Now that you have learned about variables, constants, th e assignment statement, and
comments , we are ready to write a prog ram that solves the prob lem from the begin­
nin g of chapter . The pro gram di splays the volum e of a six-pack of cans and the total
vo lum e of the six-pack and a two -liter bottl e. We use constants for th e can and bottl e
vo lum es. The totalVolume variable is ini tialized with the volum e of the cans. Using an
assignme nt statement, we add the bottl e vo lume. As yo u can see from the pro gram
output , the six-p ack of cans contains over two liters of soda.

ch02/sec01/volume1 .py

1
2
3
4
5
6
7
8
9

This program comp ut es the volum e (in liters) of a six-pack of soda
cans and the total volume of a six-pack and a two- liter bottle .

Lit ers in a 12-oun ce can and a two -liter bottle.
CAN_VOLUME = 0.355
BOTTLE_VOLUME = 2.0

10 # Numb er of cans per pack.
11 cansPerPack = 6

34 Chapter 2 Programming with Numbers and Strings

12
13 # Calc ulate tota l volume in the cans.
14 totalVolume = cansPerPack '' CAN_VOLUME
15 print ("A six-pac k of 12-ounce cans contains " , totalVol ume, "liters.")
16
1 7 # Calc ulate total volume in the cans and a 2-l iter bot tle.
18 tot a 1 Vo 1 ume = tot a 1 Vo 1 ume + BODLE_ VOLUME
19 print ("A si x-pack and a two- l i te r bott l e conta in" , totalVolume, "li t ers.")

Program Run

A six-pack of 12-ounce cans contains 2.13 liters.
A six-pack and a two-liter bottle contain 4. 13 liters.

1. Define a va riabl e suitable for holdin g the number of bottles in a case.

2. What is wrong with the following statement?

ounces per liter= 28.35

3. Define two variables, uni tPri ce and quantity, to contain the unit price of a single
bottle and the number of bottles pur chased. U se reasonable initial va lu es.

4 . Use the variables declared in Self Check 3 to print the total purchase p rice.

5. Some drinks are sold in four-packs in stead of six- p acks. H ow wou ld you ch ange
the vo 1 umel. py program to compute the total vo lume?

6. Why can't th e variable total Volume in the vol umel. py program be a constant
va ri abl e?

7. How would you explain assignment using the parking space an alogy?

Practice It Now you can tr y th ese exercises at the end of the chapter: R2.l, R2.2, P2.1.

Common Error 2. I

Programming Tip 2.1

Using Undefined Variables

A variable must be created and init ialized before it can be used for the firs t time. Fo r example, a
prog ram start ing with the follow ing sequence of sta tements wo uld not be legal:

canVolume = 12 '' l iterPerOunce # Error: l it erPerOunce has not yet been created.
lit erPerOunce = 0.0296

In your progr am, the statements are executed in order. When the first statement is executed by
the virtu al machin e, it does not kn ow that 1 iterPerOunce will be created in th e next line, and it
reports an "undefined name" error. The remedy is to reorder the sta tements so that each vari­
able is created and initializ ed before it is used.

Choose Descriptive Variable Names

We could have saved ours elves a lot of typing by using shorte r variable names, as in

CV= 0.355

Compa re this declarat ion with the one that we actua lly used, though . Which one is easier to

read? Ther e is no comparison. Just read ing canVolume is a lot less trouble than reading cv and
then figuring out it must mean "can volum e".

2.2 Arithmetic 35

This is particularly important when programs are written by more than one person. It may
be obvious to you that cv stands for can volume and not current velocity, but will it be obvious
to the person who needs to updat e your code years later? For that matter, will yo u remember
yoursel f what cv means when you look at the code three months from now?

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your
code without explanation. For example,

totalVolume =bott les* 2

Why 2? Are bottles twice as voluminou s as cans? No, the reason
is that every bottle contains 2 liter s. Use a named cons tant to
make the code self-documenting :

BOTTLE_VOLUME = 2.0
totalVolume =bottles* BOTTLE_VOLUME

There is another reason for using named constants. Suppose cir­
cumstances change, and the bottle volume is now 1.5 liters. If
you used a named constant, you mak e a single change, and you
are done. Otherwise, you have to look at every value of 2 in your

We prefer programs that
are easy to understand
over those that appear
to work by magic.

program and ponder whether it meant a bottle volume or something else. In a program that is
mor e than a few pages long, that is incredibly tedious and error-prone.

Even the most reasonable cosmic constant is going to change one day. You think there are
365 days per year? Your customers on Mars are going to be pretty unh appy about yo ur silly
prejudice. Make a constant

DAYS_PER_YEAR = 365

__ 2_.2 Arithmetic

0
0
.c
0.

"" s
(/)

~
:,
()

!
:,
g
.c
@

In the following sec tion s, you will learn how to carr y out arithmetic calcu latio n s
in Python .

2 .2 .1 Basic Arithmetic Operations

P yt hon sup port s the same four basic ar ithmetic operations as a calc ul ator - add ition,
subtr action, multiplication, and division-but it uses diff ere nt symbols for multipli ­
cation and division.

You must write a * b to d enote multiplication. Unlike in mathematics, yo u cannot
w rite a b, a· b, or ax b. Similarly, division is always indic ated w ith a/, n ever a+ or a
fraction bar. b

a+
For example, - 2- beco mes (a + b) / 2.

The sym bols + - '' / for the arithmetic operations are called operators. The com ­
bination of var iabl es, lit era ls, operators, and parentheses is called an expression . For
example , (a + b) / 2 is an expression.

36 Chapter 2 Programming with Numbers and Strings

Mixing integers and
floating-point values
in an arithmetic
expression yields a
floating-point value.

Parentheses are used just as in algebra: to indi cate in w hich ord er the parts of the
expression shou ld be computed. For exampl e, in the expression (a + b) I 2, the s~m
a + bis comput ed first, and then the sum is divided by 2. In contrast, in the express10n

a + b I 2

on ly bis divid ed by 2, and th en the sum of a and b I 2 is formed. As in re~_ lar algebraic
notation, multip lication and division have a higher precedence than add1t1on and sub­
traction. For example, in the expression a + b I 2, the I is carried out first, even though
the + operation occurs further to the left. Again, as in algebra, operators with the same
preceden ce are executed left-to-right. For example, 10 - 2 - 3 is 8 - 3 or 5.

If you mix int eger and floating-po int values in an arithmetic expression, the result
is a floating-point value. For examp le, 7 + 4. O is the floating -po int value 11. 0.

2.2.2 Powers

Python uses the expo nenti al operator** to denote the power operation. For example,
th e Python equivalent of the mathematic al expression a2 is a ** 2. Note that there can
be no space bet wee n the two asterisks. As in mathematics, the exponentia l operator
has a higher order of precedence than th e other arithmetic operators. For examp le,
10 ,, 2 ** 3 is 10 · 23 = 80. Un like the other arithmetic operators, power operators are
evaluated from right to left. Thus, the Python expression 10 ** 2 ** 3 is equivalent to
1 o(23

) = 108 = 100,000 ,000.
In algebra, yo u use fractions and exponents to arr~nge expressi?ns i_n a ~om­

pact two-dimensional form. In Python, yo u have to wnt e all express10ns 111 a l111ear
arrangement. For example , the mathematica l expression

b X (1 +-r)n
100

becomes

b * (1 + r I 100) ** n

Figure 3 shows how to analyze such an express ion.

b ;'r (1 + r I 100) ,'r,'r n

'----y-J

r

100
'--v---"

r
1 +-

100

(
l +- r)n

100

bx (l+ -r)n
100

Figure 3 Ana lyzing an Express ion

The I I operator
computes floor
divis ion in which
the remainder is
disca rded.

The% operator
com putes the
remainder of a
floor division.

2.2.3 Floor Division and Remainder

When you divide two integers with the I oper ato r, you
get a floating-point value. For example,

7 I 4

yields 1.75. However, we can also perform floor divi­
sion using the I I operator. For positive integers, floo r
divis ion computes the quotient and · discards th e frac­
tional part. The floor division

7 II 4

evaluates to 1 because 7 divided by 4 is 1.75 with a frac ­
tional part of 0.75 (which is discarded).

If you are interested in the remainder of a floor div i­
sion, use th e% operator. The value of the expression

7 % 4

2.2 Arithmetic 37

Floor division and the %
operator yield the dollar and
cent values of a piggybank
full of pennies.

is 3, the remainder of the floor division of 7 by 4. Th e% symbo l h as no analog in alge­
bra. It was chosen because it look s similar to I, and the remain der operation is related
to division. The operator is called modulus. (Some people call it modulo or mod.) It
has no relationship with the percent operation th at you find on some calcula tor s.

Here is a typical use for the I I and % operations. Suppose you h ave an amou nt of
pennies in a piggybank:

pennies= 1729

You want to determine the value in dollar s and cents. You obtain the dollars through
a floor division by 100:

do 11 ars = pennies I I 100 # Sets dollars to 17

The floor division discards the remaind er. To obtain the remainder, use the% operator:

cents = pennies % 100 # Sets cents to 29

See Table 3 for additiona l examp les.
Floor division and modu lus are also defined for ne gative integers and floating­

point numbers. However, those definitions are rather techni cal, and we do not cove r
them in thi s book.

Table 3 Floor Division and Remainder

Express ion
Value Comment

(w here n = 1 729)

n % 10

n II 10

n % 100

n % 2

-n II 10

9

172

29

1

- 173

For any positive int eger n, n % 10 is the last digit of n.

Thi s is n with out the last digit.

The last two digits of n.

n % 2 is O if n is even, 1 if n is odd (provi ded n is not negative)

- 173 is the largest integer::;; - 172.9. We will not use floor division for
negative numbers in this book.

38 Chapter 2 Programming w ith Numbers and Strings

A function can return
a value that can be
used as if it were a
literal value.

Syntax 2.2

2 .2 .4 Calling Functions

You learned in Chapter 1 that a function is a collection of programming instruc­
tion s that carr y out a particula r task. We have been using the print fun ctio n to displa y
information, but there are many oth er function s availab le in Python. In thi s section ,
you will learn more abo ut functions th at wo rk with number s.

Most functions return a value. That is, when the function completes its task, it
passes a va lue back to the point wh ere the function was called. One example is the abs
function that returns th e absolu te value-the value without a sign-of its numerical
ar gument. For exampl e, the call abs(-173) return s the value 173.

The value returned by a function can be stored in a var iable :

distance= abs(x)

In fact, the returned value can be used anyw here that a value of the same type can be
used:

print("The distance from the origin is", abs(x))

The abs function requires data to perform its task, namel y the number from which to
comp ut e the absolute value. As y ou learned earli er, data that yo u provide to a fun c­
tion are the arguments of the call. For example, in the call

abs(-10)

the value -10 is th e argument passed to th e abs function.
When calling a function, yo u must provide th e correct number of arguments. The

abs function takes exactly one argu ment. If you call

abs(-10, 2)

or

abs()

you r program w ill gener ate an erro r messa ge.
Some function s have opt ion al arg um ents that you only pro vide in certain situa­

tions. An exampl e is th e round function. W hen called with one argum ent, such as

round(? .625)

the function returns th e nearest integer; in thi s case, 8. Wh en called w ith two argu­
ments, the seco nd argument spec ifies th e des ired number of fraction al digits.

Calling Functions

This argument is passed to the function.
\

distance= abs(x)

Each of these function ~
calls returns a value. <____

This is an optional argument
of the round function.

tax = round(price '' rate , 2)
The min function takes an

arbitrary number of arguments.
Arguments can be expressions. ~

best= min(pricel, price2, price3 , price4)

....

Python has a
standard library that
provides functions
and data types for
your code.

A library function
must be imported
into your program
before it can be used.

2.2 Arithmetic

Table 4 Built-in Mathematical Functions

Function

abs(x)

round(x)
round(x, n)

F or exampl e,

round(? .627, 2)

is 7.63.

x,,)

x,,)

Return s

The absolute value of x .

The floating-point value x rounded to a whole number
or ton decimal places.

The largest value from among the arguments.

The smallest value from among the arguments.

39

There are two common sty les for illustrating optional argume nts. One style, which
we use in th is book, shows different function calls with and without the optional
argument s.

round(x) # Returns x rounded to a who le number.
round (x, n) # Return s x rounded to n decimal places.

The second style, whic h is used in Python's standard documentation, uses square
brackets to denote the optional arguments.

round(x[, n]) # Returns x rounded to a whole number or ton decimal places.

Fin ally, some functions, such as the max and min functions, take an arb itr ary nu mber of
arguments. For example, the call

cheapest = mi n(?.25, 10.95, 5.95, 6.05)

sets the var iable cheapest to the minimum of the fun ction's argument s; in thi s case, the
numb er 5.95.

Table 4 sho ws the function s th at w e introdu ced in this section.

2.2.5 Mathematical Functions

The Py th on lan gua ge itself is relati vely simple, but Pytho n cont ains a standard libr ary
th at can be used to create powerful program s. A library is a collection of code that
h as been written and trans lated by someone else, ready for yo u to u se in your pro­
gram. A standard library is a librar y th at is considered part of th e lan gua ge and must
be included with any Pyt hon system.

Python 's standard library is organ ized in to modules. Related fun ctions and dat a
typ es are grouped into th e same module. Functions defined in a modul e must be
explici tly loaded into your progr am before they can be u sed. Python 's math module
includes a number of m athemati cal functions. To use any function from this modul e,
yo u must first import the function. For example, to use the sqrt function, w hich com ­
pute s the square root of it s argument, fir st in clude the stateme nt

from math import sqrt

at the top of your program file. Then yo u can simpl y call th e function as

y = sqrt(x)

40 Chapter 2 Programming with Numbers and Strings

Table 5 Selected Function s in the math Module

Function

sqrt (x)

tru nc(x)

cos(x)

sin (x)

tan(x)

exp(x)

degrees(x)

radians(x)

log(x)
log(x, base)

Returns

The square ro ot of x . (x ~ 0)

Trun cates floating-point value x to an inte ger.

Th e cosine of x in radians.

Th e sine of x in radians.

Th e tangent of x in radians.

Convertx radians to degrees (i.e., return s x · 180/ n)

Convert x degrees to radians (i.e., return s x · n / 180)

The natural logarithm of x {to base e) or the logarithm
of x to the given base .

Table 5 shows additional functions defined in the math module.
While most functions are defined in a module, a small numb er of functions (such

as print and the functions introduced in the preceding section) can be used without
importing any module . These functions are called built-in function s because they are
defined as part of th e langu age itself and can be us ed directl y in y our programs.

Mathematical
Expression

(
l+- T)n

100

.Ja2 + b2

n

Table 6 Arithmetic Expres sion Examples

Python
Expressio n

Cx + y) / 2

(1 + r / 100) ** n

sqrt (a ** 2 + b ** 2)

pi

Comments

The parentheses are required;
x + y / 2 compute sx + f.
Parenthes es are not required; operato rs wit h
the same pr ecedence are evaluated left to right.

The parentheses are require d.

You must import the sqrt functio n from the
math module.

pi is a constant declared in the math module.

8. A bank account earn s inter est once per y ear. In Python, how do y ou compute
the intere st earn ed in the fir st yea r? As sume variabl es percent and balance both
contain flo ating -p oint valu es.

9. In Py thon, ho w do y ou compute the side len gth of a square whos e are a is stored
in the variable area?

>

10. The volum e of a sphere is given by

V = in-r 3
3

2.2 Arithmetic 4 1

If th e radius is given by a variable radius that contains a flo ating-poin t value,
w rite a Py thon expre ssion for th e volume .

11. What is the value of 1729 / / 10 and 1729 % 10?

1 2. If n is a positive numb er, what is (n / / 10) % 10?

Practice It Now y ou can try these exercises at the end of th e chapt er: R2.3, R2.5 , P2.3, P2.4.

Roundoff Errors

Roundoff error s are a fact of life when calculating with floating-point numbers. You prob ably
have encounter ed that phenomenon yourself with manual calculations. If you calculate 1/ 3 to
two decimal places, you get 0.33. Multipl ying again by 3, you obtain 0.99, not 1.00.

In the processor hardw are, numbers are represented in the binary number system, usin g
only digits O and 1. As with decimal number s, you can get roundoff errors when binary digits
are lost. They just may crop up at different places than you might expect.

H ere is an example:

price= 4.3 5
quantity= 100
total= price * quantity # Should be 100 * 4 .35 = 435
pri nt(t ota 1) # Prints 434. 99999999999994

In the binary system, there is no exact representation for 4.35, just as ther e is no exact repre­
sentation for 1/3 in the decimal system. The representation used by the compu ter is just a little
less than 4.35, so 100 times that value is just a littl e less than 435.

You can deal with roun doff error s by roundin g to the nearest integer or by disp laying a
fixed number of digits after the decimal separator (see Section 2.5.3).

Unbalanced Parentheses

Consider the expression

CCa + b) * t / 2 * Cl - t)

What is wron g with it ? Co unt the parenth eses. There are three (and two). Th e parenth e­
ses are unbalanced . This kind of typin g error is very comm on with complicated expressions.
Now consider this expression.

(a + b) * t) / (2 * (1 - t)

Thi s expression has three C and thr ee), but it still is not correct. In the middl e of the
express10n,

Ca + b) * t) / (2 * Cl - t)

i

there is only one C but two), which is an error. At any point in
an expression , the coun t of C must be greater than or equal to the
count of), and at the end of the expr ession the two counts must be
the same.

Here is a simple trick to make the coun ting easier without using
pencil and paper. It is difficult for the brain to keep two count s

I

I'

. I
' I

I

42 Chapter 2 Programming w ith Numbers and Strings

Programming Tip 2.3

g
I .I

Special Topic 2.1

Special Topic 2.2

simultaneous ly. Keep on ly one count when scanning the expression. Start wi th 1 at the first
opening parenthesis, add 1 whenever you see an opening parenthes is, and subtract one when­
ever you see ~ closing parenthesis. Say the numbers aloud as you scan the expression. If the
count ever drops below zero, or is not zero at the end, the parentheses are unbalanced. For
example, when scanning the previous expression, you wou ld mutter

Ca+ b) * t) / c2 * Cl - t)
1 0 - 1

and you would find the error.

Use Spaces in Expressions

It is easier to read

xl = (-b + sqrt(b ** 2 - 4 *a• c)) / (2 * a)
than

xl=(-b+sqrt(b**2-4*a*c))/(2*a)

Simply put spaces around all operators(+ - * / % =, and so on). However, don't put a space
after a unary minus: a - used to negate a single quantit y, such as -b. That way, it can be easily
distinguished from a binary minus, as in a - b.

It is customary not to put a space after a function name. That is, write sqrt(x) and not
sqrt (x).

Other Ways to Import Modules

Python provides several different ways to import functions from a module into you r program .
You can import multipl e functions from the same module like this:

from math import sqrt , sin, cos

You can also import the entire contents of a module into your program:

from mat h i mport*

Alternatively, you can import the module with the statement

import math

With this form of the import statement, you need to add the module name and a period before
each funct ion call, like this:

y = math.sqrt(x)

Some programmers prefer this style because it makes it very explicit to whic h modul e a par­
ticular funct ion belongs.

Combining Assignment and Arithmetic

In Pytho n, you can combine arithmet ic and assignment. For example, the instruct ion

tota l += cans
is a shortcut for

total = total + cans
Similarly,

total *= 2

is another way of wri ting

tota l = total * 2

2.3 Problem Solv ing: First Do It By Hand 43

Many programmers find this a convenient shortcut especially when incrementing or decre­
ment ing by 1:

count+= 1

If you like it, go ahead and use it in your own code. For simplicity, we won't use it in this book.

Line Joining

If you have an expression that is too long to fit on a single line, you can cont inue it on another
line provided the line break occurs inside parentheses. For example,

xl = ((-b + sqrt(b ** 2 - 4 •a* c))
/C2''a)) #Ok

However, if you omit the outermost parentheses, you get an error:

xl = (-b + sqrt(b ** 2 - 4 *a* c))
/ (2 * a) # Erro r

The first line is a complete statement, which the Pytho n int erpret er processes. The next line,
/ (2 * a), makes no sense by itself.

There is a second form of joining long lines. If the last character of a line is a backslash, the
line is joined with the one following it:

xl = (-b + sqrt(b ** 2 - 4 *a• c)) \
I (2 * a) # Ok

You must be very careful not to put any spaces or tabs after the backslash. In this book, we
only use the first form of line joining .

2.3 Problem Solving: ELrst Do It By Han~ ====1
In the preceding section, you learned how to expres s computations in Py thon. W h en
you are asked to write a program for so lving a probl em, you m ay naturall y thin k
about the Python synt ax for th e comp utations. However, before yo u start pro gra m­
ming, y ou should fir st take a very important step : carry out the computations by
hand. If you can't compute a so luti on yourself, it's unlikely that you' ll be able to
write a program th at automates the computatio n.

To illustrate th e use of h and calc ulati ons, consider the following prob lem : A row
of black and white tiles n eed s to be placed along a wa ll. For aesthetic re aso ns, the
archit ect has specified th at the fir st and last tile shall be black.

Your task is to comp ut e the number of tiles n eeded and th e gap at each end, given
the space availabl e and the width of each tile.

Gap

44 Chapter 2 Programm ing with Numbers and Str ings

Pick concrete va lues
for a ty pical situ at ion
to use in a hand
calculati on.

To make the problem mor e concrete, let's assum e the following dim ensions:

• Total width: 100 inches

• Tile width: 5 inch es

Th e obvious solution would be to fill the space wit h 20 tiles, but that wo uld not
wo rk - the last tile would be whit e.

Ins tead, look at the pro blem thi s way : Th e firs t tile must always be black, and then
we add some number of whit e/ black pair s:

11[]1[]1[]111[]1
Th e first tile takes up 5 inches, leaving 95 inches to be covered by pairs. Each pair is
10 inches wide. Therefore the numb er of pairs is 95 I 10 = 9.5. H owever, we need to
discard the fractional part since we can't have fractions of tile pair s.

Therefore, we will use 9 tile pair s or 18 tiles, plu s the initi al black tile. Alto geth er,
we requir e 19 tiles. .

Th e tiles span 19 x 5 = 95 inches, leaving a tota l gap of 100 - 19 x 5 = 5 mches.
Th e gap should be evenly distribut ed at both ends. At each end, the gap is

(100- 19 x 5) I 2 = 2.5 inches.
Thi s comput ation gives us enough inform ation to devise an algorithm with arbi-

trary values for the total width and tile width .

number of pairs= integer part of !total width- tile width)/ 12 x tile width)
number of tiles= 1 + 2 x number of pairs
gap at each end = I total width- number of tiles x tile width) I 2

As you can see, doing a hand calculation gives enou gh insight int o the prob lem tha t it
becomes easy to develop an algorithm . See ch02/ sec03/ ti 1 es . py in yo ur sour ce code for
the complete program .

13 . Translate the p seudo code for computin g the number of tiles and the gap width
into Pyt hon.

14 . Suppose the architect specifies a pat te rn wit h black, gray, and white tiles, like
this:

Again, the first and last tile should be black. H ow do yo u need to mo dify the
algorithm ?

1 s. A ro bot needs to tile a floor with altern ating black and whit e tiles. Develop
an algor ithm that yields the color (0 for black, 1 for whit e), given the ro w and
column numb er. Start with specific values for th e row and column , and then
generalize.

2

3

4

2 3 4

Practice It

2.3 Problem Solv ing: First Do It By Hand 4 5

16. For a part icular car, repair and maint enance costs in year 1 are estimated at $100;
in year 10, at $1,500. Assuming that the rep air cost increases by the same amou nt
every year, develop pseudocod e to compute the repair cost in year 3 and then
genera lize to year n .

17. The shape of a bot tle is app roximated by two cylind ers of radiu s r1 and r2 and
heights h1 and h2, joined by a cone section of height h3.

Using the formulas fo r the volume of a cylind er, V = nr 2h, and a cone section,

(ri2 + r1r2 + r})h
V = n-'---- -- ~ -

3 '

develop pseudo code to compu te the volum e of the bottl e. Using an actual bottl e
with known volume as a sample, make a hand calculation of yo ur pseud ocode.

N ow you can try these exercises at the end of the chapter : R2.15, R2.17, R2. 18.

l wORKED EXAMPLE 2 .1 Computing Travel Time

Problem Statement A robot needs to retr ieve an item that is
located in rocky terrain next to a road . Th e robot can trave l at a
faster speed on the road than on the rocky terrain, so it will want
to do so for a certa in distance before moving in a straight line to the
item. Calculate by hand how much time it takes to reach the item.

Your task is to compute th e tota l time tak en by the ro bo t to reach its goa l, given the fo llowing
inputs:

• T he distance betw een the rob ot
and the item in the x- and
y-dir ection (dx and dy)

• The speed of the robot on the
road and th e rocky terrain
(s1 and s2)

• The length /1 of the first segment
(on the road)

To make the problem more
concr ete, let's assume the followin g
dimensions:

Robot

Item

<O '}

,,,,, I ~,..
s~e." I dy

---~--1
S eecl = s

dx

Item

'} "'f' I
J>~' I 3 km

s~ _____ J

<
Cl)

< z
0
~
" ;::

8

46 Chapter 2 Programming wit h Number s and Strings

~he total time is the time for traversing both segments. The time to traverse the first segment is
simpl y the lengt h of the segment d ivided by th e speed: 6 km divided by 5 km/ h, or 1.2 hours.

6

e rcem

/ [,
/4 I ______ J

To comput e the time for the second segment, we first need to know its length. It is the hypot­
enuse of a right triangle wit h side lengths 3 and 4.

Therefore, its length is ~3 2 + 42 = 5. At 2 km/h, it takes 2.5 hours to travers e it. Th at make s
the tota l travel time 3.7 hours.

Thi s computation gives us enoug h information to devise an algorit hm for the tota l travel
time w ith arbitra ry arguments:

Time for segment 1 = 11 / s1
Length of segment 2 = square root of [(dx - I/ + dy2]
Time for segment 2 = length of segment 2 I s2
Total time = time for segment 1 + time for segment 2

Translated into Python, the computations are

segmentlTime = segmentl l ength / segment1Speed
segment2 Lengt h = sqrt((xDistance - segment ll engt h) ** 2 + yDistance ** 2)
segment2Time = segment2 Length / segment2Speed
totalTime = segmentl Time + segment2Time

Note that we use variable names that are lon ger and more descriptiv e than dx or s1. When you
do ha.nd _calculatioi:is, it is convenient to use the shorter names, but you sho uld change th em to
~escnpuve nam es ~n you r. program. In real .life, programs are common ly developed by mul ­
tiple people. A vana ble with a short name like sl may have meaning to yo u, but it may have
no meanmg for someo ne who wo rks on the program at a later time. See ch02/worked _exampl e_l/
t ravel ti me. py for the complet e program.

2.4 Strings

Strings are sequences
of characters.

Many programs process text, not numbers. Text cons ists
of characters: letters, numbers, punctuation, spaces, and
so on. A string is a sequence of characters. For examp le,
the string "Hello" is a sequence offi ve characters.

2 .4.1 The String Type

You have already seen str in gs in print sta temen ts such as

print("Hello")

A str ing can be stored in a variable

g ree ting = "Hello"

p

A string literal
den otes a particular
st ring.

The len function
returns the number
of characters in
a string.

Use the + operator to
concatenate strings ;
th at is, to put them
together to yield a
longer string.

2.4 Strings 4 7

and later accessed when needed just as numerical values can be:

pri nt(greeti ng)

A string literal denotes a particular string (such as "He 11 o"), just as a number literal
(such as 2) denot es a particular number. In Pyt hon, string literals are specified by
enclosing a sequence of characters within a matching pair of either single or double
quote s.

print("This is a string. ", 'So is this.')

By allowing both types of delimit ers , Py thon makes it easy to include an apostrophe
or quotation mark within a string .

message = 'He said "Hello'"

In this book, we use double quotation marks around str ings because this is a common
convention in many other programming languag es. However, the int eractive Python
interpreter always displays strings with single quotation marks.

The number of ch aracters in a string is called the length of the str in g. For examp le,
the length of "Harry" is 5. You can compute the length of a str in g using Python 's len

function:

length= len("World!") # l ength is 6

A string of length O is called the empty string. It contains no characters and is written
as 1111 or''.

2 .4.2 Concatenation and Repetition

Given two strings, such as "Harry " and "Morgan", yo u can concatenate them to one
long string. The result consists of all characters in the first string, follo wed by all
characters in the second strin g. In Pyth on, you use the + operator to concatenate two
st rin gs. For examp le,

f i rstName = "Harry"
l astName = "Morgan"
name = firstName + lastName

results in the str ing

"HarryMorga n"

What if you'd like th e firs t and last name separated by a space? No problem :

name = firstName +" " + lastName

This statem ent concatenates three strings: fi rstName, the string literal" ", and l astName .

The result is

"Harry Morgan "

When th e expression to the left or the right of a + operator is a strin g, the other one
must also be a string or a syntax erro r will occur. You cannot concatenate a string
with a num erical value.

You can also produce a string th at is the result of repeati ng a string multiple tim es.
For examp le, supp ose you need to pririt a dashed lin e. In stead of specify in g a litera l
string with 50 dashe s, yo u can us e the * operator to create a strin g that is comprised of
the string" - " repeated 50 times . For example,

dashe s = "- "* 50

•

48 Chapter 2 Programming with Numbers and Str ing s

A str ing can be
repeated using the
" operator.

The st r function
converts an integ er
or floating-point
value to a string.

The int and float
functions convert
a string containing
a numb er to the
numerical va lue.

dffi:iW

results in th e strin g

A str ing of any length can be repeated using th e *
statem ents

message= "Echo ... "
print(message * 5)

displ ay

Echo . .. Echo ... Echo ... Echo ... Echo .. .

operator. For example, the

The facto r by whic h th e string is repli cated must be an integer value. The factor can
appear on eithe r side of the 1

' operator, but it is common pr actice to pla ce the str ing on
the left side and the int eger factor on the right.

2.4.3 ConvertiQ.9 Between Numbers and Strings

Sometimes it is necessar y to conver t a numerica l value to a strin g. For example, sup­
pose you need to append a number to the end of a str ing. You cannot conc atenate a
str ing and a number:

name = "Agent " + 1729 # Error: Can on ly concatenate strin gs

Because strin g concat ena tion can only be performed betwee n two str in gs, we must
first convert the nu mbe r to a string .

To prod uce the strin g representation of a numer ical value, use the str function.
The sta tem ent

str(1729)

converts the int eger valu e 1729 to the string "1729". The str funct ion so lves our
problem:

i d= 1729
name= "Agent"+ s tr(id)

The st r function can also be used to conver t a floatin g-point value to a strin g.
Co nver sely, to turn a str ing cont ainin g a nu mber into a numerical value, use the int

and fl oat functions:

i d = int("1729")
pri ce = float("17 .29")

This convers ion is import ant when the strin gs come from user input (see Section 2 .5.1).
The str ing p assed to the i nt or fl oat function s can onl y consis t of those characters

that compr ise a literal value of th e indi cated type. For examp le, the statement

va lu e = float("17x29")

will generate a run -time error because the lett er "x" cannot be part of a float ing-point
liter al.

Blank spaces at the front or back will be igno red: int(" 1729 ") is still 1729.

2.4.4 Strings and Characters

Str in gs are sequences of Unicode characters (see Comp utin g & Society 2 .1). You can
access the individua l characte rs of a string based on their positio n wi thin th e str in g.
This position is called th e index of th e ch arac ter.

String positions are
counted starting
with 0.

The first character has index 0, th e second has index 1,
and so on.

2.4 Strings 49

W O R D
6
0
-a
-"'

H a r r y
u

"---·-----·-- 3

0 1 2 3 4

An individua l characte r is accessed using a special sub script
notation in which the position is enclosed wit hin squ are
br ackets . Fo r example, if the var iable name is defined as

A string is a sequence of
characters.

name= "Harry"

the statements

fir s t= name[O]
last = name[4]

extrac t two different characte rs from th e string . T he first statement extracts the first
characte r as the stri ng "H" and stores it in var iable first. Th e second state men~ ~xtrac~s
the ch aracter at position 4, which in thi s case is the last character, and stores 1t m van ­
able last .

H a r r y

0 2 3 4

first = H last = y

The inde x value must be within the valid range of ch aracter positions or an "inde x
out of ran ge" exception will be generated at run tim e. The le ? funct~on can be u sed to
determine th e position of the last index, or the last character ma stnng.

pos = l en(name) - 1 # Len gth of "Harry" is 5
l ast = name [pos] # last is set to "y"

The followino pro gram put s th ese concepts to wo rk. The pro ­
gram initi aliz:s two variables w it? s~r~ngs, on e with your n~me
and the other wit h that of y our s1gmficant other . It th en pnnt s
out your initia ls.

The op eration f i r s t [O] makes a string cons i_sting of one char­
acter, taken from th e start of first . The operat10n seco nd [O] does
the same for the second name. F inally, you concate nate the
resulting one -charac ter str ings wit h the string liter al"&" to get a
st ring ofle ngth 3, th e i niti a l s str in g. (See Figure 4 .)

Figure 4
Building th e i ni tials String

ch02 / sec04 / initials.py

1 ##

first = R o d o 1 f o
0 1 2 3 4 5 6

second = S a 1 1 y
0 2 3 4

init i als
0 2

2 # Th.is program prints a pair of initials.
3 #
4

Initials are formed
from the first Jetter
of each name .

(/)

~
t

6
0
-a
-"' u
0

vi
'5,

Ol) .,
...J
..c:
u
~
©

I I

50 Chapter 2 Programming w ith Numbers and Str ings

s
6
7
8

Set the names of the couple.
first = "Rodol fo"
second = "Sa 11 y"

9 # Comput e and display the init ials.
10 init i als = fi rst[O] + "&" + second[O]
11 print (ini tials)

Statement

Table 7 String Operations

Result Comment

st ri ng= "Py"
st ring= st ring+ "t hon"

st ring is set to "Python" When applied to strin gs, + denotes
concatenation .

pri nt("Pl ease" + Print s
" ente r your name: ") Please ente r your name:

Use concatenation to break up strings
that don 't fit into one line.

team = str(49) + "ers" t eam is set to "49ers" Because 49 is an int eger, it must be
converted to a strin g.

greet i ng= "H & S"
n = l en(greeting)

st ring = "Sa 11 y"
ch = string [l]

n is set to 5

ch is set to "a"

Each space coun ts as one character.

No te that the ini tial position is 0.

last= stri ng[le n(string) - l] las t is set to the str ing cont aining
the last character in st ring

Th e last character has position
len(st ri ng) - 1.

2.4.5 String Methods

In co_mputer _progra mmi ng, an obj~ct is a soft wa re entity th at repre sents a va lue w ith
ce_rtam beha vior. !he value ~an be simpl e, su ch as a string, or complex, li ke a graph ical
w mdo w or data file. You will learn much ~ore about obje cts in Chapter 9. For n ow,
you n eed to ~aster a sm ~ll a~o~nt of notation for w orking with str in g object s.
. The bel~av10r of an obJect 1s given through its methods. A method like a function
is a co ll_ect10n ~f P:ogr ammi n g in struction s that carry out a part icula r' task. But unlik~
a fun ct10n, wh ich 1s a sta n da lone oper ation , a method can onl y be app lied to an object
of th e ty pe ~or w ~ich it w as defin ed. For examp le, you can app ly th e upper method to
any stnn g, lik e th is:

name = "John Smi th "
uppercaseName = name. upper() # Sets uppercaseName to "JOHN SMITH"

N ote th at the method nam e follows the object, and th at a dot(.) separ ates the obJ·ect
and method name .

!here is another string method call ed l ower that y ields the low ercase version of a
stnn g:

print(name . lower()) # Print s j ohn smith

It is a bit ar bi trary w hen you need to call a function (such as l en(name)) and when you
? eed t? call a m et~od (name. lower ()) . You wi ll simpl y ne ed to remember or look it up
111 a pnnted or online Py thon refer ence.

2.4 Strings 51

Just like function calls, method calls can h ave argumen ts. For example , the str ing
me thod replace creat es a ne w str in g in w hich every occurrence of a given sub st ring is
repl aced w ith a secon d string. Here is a call to that method w ith two argument s:

name2 = name. replace("John", "Jane") # Sets name2 to "Jane Smith"

Note that none of th e met hod calls ch ange the contents of the string on which the y
are invoked. After the call name.upper(), the name variabl e still holds "John Smith". The
method call returns the uppercase vers ion. Similarly, the replace method returns a
new st rin g w ith the replacements, w ithout modif yin g th e or igina l.

Table 8 list s the str in g methods introduced in this section.

Table 8 Useful St ring Methods

Method Returns

s. lower () A lowe rcase version of strings.

s. upper() An upp ercase version of s.

s. replace(old, new) A new version of strin gs in which every occurr ence of
the substring old is rep laced by the strin g new.

18. What is the length of the string "Python Program"?

19. Given this string variab le, give a method call th at returns th e string "gram".

title = "Python Program"

20. Use strin g concate n ation to turn the string var iable title from Self Check 19 into
"Python Programming".

21. What doe s th e fo llow in g state ment sequen ce print?

string = "Harry"
n = l en (string)
mystery= stri ng[O] + string[n - 1]
print(mystery)

Practice It Now y ou can try th ese exercise s at the end of the chapter: R2.7, R2.1 1, P2.15, P2.22.

I Special Topic 2 .4 Character Values

A character is stored internally as an integer value. The specific value used for a given character
is based on a standard set of codes. You can find the values of the characters that are used in
Western European languages in Appendix D. For example, if you look up the value for the
character "H", you can see that it is actually encoded as the numb er 72.

Python pro vides two fun ctions related to character encodings . The ord functi on returns the
number used to repres ent a given charact er. The chr function returns the character associated
with a given code. For example ,

print("The letter H has a code of", ord("H"))
pri nt ("Code 97 represents t he character", chr(97))

produces the following output

The le tt er H has a code of 72
Code 97 represents t he character a

52 Chapter 2 Programming w ith Numbers and String s

Special Topic 2.5 Escape Sequences

Sometimes you may need to include bot h single and double quotes in a literal st ring. For
example, to include double quotes around the word Welcome in the literal stri ng "You' re Wel­
come", precede the quota tion marks wit h a backs lash(\), like this:

"You' re \ "Welcome\" "

The backslash is not includ ed in the st ring. It indicates that the quota tion mark that follows
shou ld be a part of the string and no t mark the end of the str ing . The seque nce\" is called an
escape sequence.

To include a backslash in a stri ng, use the escape sequence \ \, like this:

"C: \ \Temp\ \Secret . txt "

Anot her comm on escape sequence is \n, which denotes a newline character . Printing a newline
characte r causes the start of a new line on the d isp lay. For example , the sta tement

pri nt("*\ n**\ n*''*")

prints the characters

**

on three separate lines .

...

Computing & Society 2.1 International Alphabet s and Unicode

The English alphabet is Many countries don't use the Roman idea or thing. Words are made up of
pretty simple: uppe r· and script at all. Russian, Greek, Hebrew, one or more of these ideograp hic char­
lowercase a to z. Other Arab ic, and Thai letters, to name just a acters. Over 70,000 ideographs are

European languages have accent marks few, have completely different shapes. known.

d
0
..<::
0.

"" 0
0 en
~
" :2
0

~
0.

@

and special characters. For example, To complicate matte rs, Hebrew and Start ing in 1988, a conso rtium of
German has thre e so-called um lau t Arabic are typed from right to left. Each hardware and software manufacture rs
characte rs, a, 6, u, and a double-s char- of these alphabets has abo ut as many developed a uniform encoding scheme
acter B. These are not optional frills; characte rs as the English alphabet. called Unicode that is capable of
you couldn't write a page of German encoding text in essentially all written
text witho ut using these characters a languages of the world.
few times. German keyboards have Today Unicode defines over 100,000
keys for these characters. characters . There are even plans to add

The Germa n Keyboard Layout

JiK 'DJZI~ D'Kli1 D'~1il o codes for extinct languages, such as
] Egyptian hieroglyp hics.

Hebrew, Arabic, and English

0..
-"'
0
0 en
s
,g

e
Q
~
@

The Chinese languages as well as
Japa nese and Korean use Chinese char­
acters. Each character represen ts an The Chinese Script

d
0
..<::
0.

"" g
en
~
"ie
(/)

@

2 .5 Input and Output 53

2. 5 Input and Out ut =--------============

Use the input
function to read
keyboard input .

M os t int ere stin g progr am s ask the prog ram u ser to p rov id e input va l1:es, th e1:" the
pro gram s produ ce output s that dep end on th e u ser input. In th e follo w mg sect10n s,
y ou w ill see h ow to r ead u ser input and ho w to co ntro l th e appe ar ance of the output
that yo ur p ro gram s produ ce .

2.5.1 Userlnput

You can mak e y our p rog r am s m or e fle xibl e if y ou ask the pro gram user for inputs
rather th an using fixe d valu es . Co nsid er, for exa mple , th e i ni t ia ls:p y pro~r~~ from
Section 2.4.4 that prints a pair of initial s. Th e tw o names from w hich th e m1t~als ar e
deri ve d are spe cified as lite ra l va lue s. If th e progr am user ent ered th e n ame s as mputs,
th e pro gram co uld be used for any pair of n am es . . .

Wh en a pro gr am ask s for u ser input , it sh~rnld fir st pnnt a me ssag e that tc=:lls the
user w hi ch input is expe cted . Su ch a m essage ~s ca lled_ a pr?mpt . In P yt~ on, displa y ­
in g a pro m pt and re adin g the k ey bo ard input 1s combmed m one op erat10n .

f ir st= input ("Enter your fi rst name: ")

Th e i nput function d ispla ys the strin g ar gu ment in the con so le wi ndo w and pl ace s the
cur so r on th e sam e line , im m edi atel y follo w ing the strin g .

Ente r your f i rs t name: I
N ot e the space b etw een the colon and th e cur so r. Thi s is comm~n p~actice in ord er to
visu ally sep arate the prompt fro m th e input. Aft er the pror:rip t 1s 11spla y ed , the pro ­
gram wa its until th e u ser ty p es a n ame . A ft er the u ser suppli es th e mput ,

Enter your f ir st name: Rodol fol

th e u ser p resses th e Ente r key . Th en th e sequ ence of cha~act_ers is re tt~rn ed ~rom t~e
i nput fun ction as a str in g . In our examp le, w e stor e th e stnn g m th e van abl e f , rst so 1t
can be u sed late r. Th e prog ram th en co ntinu es w ith th e _nex t sta tem ent . .

Th e fo llowi n g ve r sion of the i ni ti a 1 s . py prog r am 1s ch anged to obtam th e two
names from th e user.

ch02/sec05/initials2.py

1
2
3
4
5
6
7
8

~ This program obtains two name s from the user and prints a pair of initials.
II

Obt ain the two name s from the user.
firs t = input ("Enter your first name: ")
second = i nput ("Enter your s ignificant othe r' s f i rst name: ")

9 # Comput e and display the init ials.
10 ini t ials = fi rst[O] + "&" + second[O]
11 pri nt (i nitials)

Program Run

Enter your first name: Rodolf o
Enter your significant other's first name: Sall y
R&S

. I

54 Chapter 2 Programming with Numbers and Strings

To read an integer
or floating-point
value, use the input
function followed
by the int or float
function.

Figure S

2.5.2 Numerical Input

The input function can on ly obtain a str in g of text from the us er. But what if we need
to obtain~ num erical valu~? Consider, for examp le, a program that asks for the price
a1:d quantity of soda contamers. To compute the total price, th e number of soda con­
ta1?ers needs to be an inte ger value, and the price per container needs to be a floating­
pomt va lue.

To read an_ intege~ valu e, fir.st use the input function to obtain the data as a string,
then convert 1t to an mteger usm g the int function.

userinput = input("Please enter the number of bottles: ")
bottl es= int(userinput)

In thi~ examp le, ~seri nput is a tempo~ar y var iable that is used to store the string repre ­
~entat 1on of th e mteger va lue (see Figure 5). After th e input string is converted to an
mteger value and stored in bottles, it is no lon ger needed.
. To re~d a floating -point value from th e u ser, the same approac h is used, except the
mput stnn g has to be converted to a float .

userinput = i nput("Enter price per bottle: ")
pri ce= float (userinput)

0 userlnput = input("Please enter the number of bottles: ")

The prompt is displayed to the program um

8 user Input = i nput("Pl ease ent er the number of bottle s : ")

use rlnput = 2 4
The string that the user entered

e bottles
)

int (userlnput)

~~ 24

Extracting an Integer Value

2. 5. 3 Formatted Output

When yo u pr in t th e result of a comput ation, you ofte n want to control its appear ­
~n ce. For examp le, whe~ yo_uyrint ~n. amount _in doll ars and cents, you usually wa nt
1t to be rounded to two s1gnif1cant d1g1ts. That 1s, you wan t the output to lo ok lik e

Price per lit er: 1.22

inst ead of

Price per liter: l.215962441314554

The follo w in g command di spl ays the price wit h two di gits afte r the decim al po int:

print(" %.2f" % pri ce) # Print s 1.22

You can also specify a field width (the total number of char acter s in cludin g spa ces)
lik e thi s: ' '

pri nt ("%10.2f" % price)

Syntax 2.3

Use the string format
operator to specify
how values should be
formatted.

2.5 Input and Output 55

String Format Operator

Syntax fonnatString % (value 1, va lue2 , • .• , valuen)

The format string can contain one or more
format specifiers and literal characters.

""

No parentheses are needed
to format a single value.

print("Quantity: %d Total: %10.2f" %
Ly-' ~

(quantity, total))

It is common to print
a formatted string.

~ V
The values to be formatted. Each

Format specifiers value replaces one of the format
specifiers in the resulting string.

The price is print ed right-ju stified using ten characters: six spaces fo llowed by the
four characters 1.22.

1 . 2 2

The argument passed to the print function

"%10.2f" % price

specifies how the string is to be form atted. Th e result is a string that can be printed or
sto red in a variable.

You learned earlier that the % symbo l is used to compute th e remainder of floor
division, but that is onl y the case w hen the values left and right of th e operator are
both numb ers. If the va lue on the left is a string, then th e% symbo l become s the string
format operator.

The construct %10. 2f is called a format specifier: it describes ho w a value should be
form att ed. The letter f at the end of the fo rmat spec ifier indicates that we are format­
tin g a floa tin g-point value. U sed for an integer va lu e and s for a strin g; see Tab le 9 on
p age 57 for exampl es.

The forma t string (th e strin g on the left sid e of th e strin g format op erato r) can con­
tain on e or more format specifiers and lit eral chara cter s. An y char acter s that are not
form at specifier s are included verb atim. For example, the com m and

"Price per lite r:%10.2f" % price

produ ces the strin g

"Price per lit er: 1.22"

You can format multip le values with a single strin g format opera tion, but yo u must
enclose them in par enthe ses and separate them by commas. He re is a typi cal example:

print("Quantity : %d Total: %10.2f" % (quantity, total))

These spaces are spaces
in the format string. width 10

Q u a n t i t y : 2 4 T o t a l 1 7 . 2 9

No field width was specified,
so no padding added

Two digits after
the decimal point

56 Chapter 2 Programming w ith Numbers and Strings

The values to be formatted (quant i ty and tota 1 in this case) are used in the order list ed.
That is, the first value is form atted based on the first format specifier (%d), the second
value (stored in tota 1) is based on the secon d format specifier (%10. 2f), and so on.

When a field width is specified, the values are right-justified within the given num­
ber of columns. While thi s is the common layo ut used with numeric al values pri nted
in table format, it's not the style used w ith string data. For examp le, the statements

t itlel = "Quantit y:"
t itle2 = "Price:"
print("%10s %10d" % (title!, 24))
print(" %10s %10.2f" % (title2, 17. 29))

result in th e following output:

Quantity : 24
Pri ce : 17.29

The output would look nicer, however, if the titl es were left-ju stified. To specify left
justification, add a minus sign before the str ing field width:

print("%-10s %10d" % (titlel , 24))
print("%-10s %10.2f" % (tit le2, 17.29))

The result is the far more pleasant

Quantity : 24
Price: 17.29

Our next example program will prompt for the pric e of a six-pack and the volume of
each can, then print out the price per ounce. The program puts to work what yo u just
learned about reading input and formattin g output.

ch02/sec05/volume2.py

1 ff
2 # This program prints the pric e per ounce for a six-pack of cans.
3 #
4
5 # Define consta nt for pack size.
6 CANS_PER_PACK = 6
7
8 # Obta in pr ice per pack and can volume.
9 userinput = input ("Please enter th e pri ce for a six - pack : ")

10 packPrice = float (userinput)
11
12 user!nput = input ("Please enter t he volume for each can (i n ounces): ")
13 canVol ume = float (userinput)
14
15 # Comp ute pack volume.
16 packVo 1 ume = ca nVo 1 ume * CANS_PER_PACK
17
18 # Compute and pr int pr ice per ounce .
19 pri cePe rOunce = packPri ce / packVo 1 ume
20 print ("Pr ic e per ounce: %8.2f " % pricePerOu nce)

Program Run

Plea se enter the price for a six-pack: 2.95
Please enter the vol ume for each can (in ounces): 12
Price per ounce: 0.04

Format String

"%cl"

"%5d"

"%05d"

"Quantity: %5d"

"%f"

"%.2f"

"%7 .2f"

"%s"

"%d %.2f"

"%9s"

"%-9s"

··~·'

2. 5 Input and Output

Table 9 Format Specifier Examples

Sample Output Comments

2 4

2 4

0 0 0 2 4

Us e d with an integer.

Spaces are added so that the field width is 5.

If you add O before the field width, zeroes
are added ins tead of spaces.

57

Q u a n t t y 2 4 Characters inside a format string but outside
a format specifier appear in the output.

1 2 1 9

1 2 2

1

H e 1 1 0

2 4 1

H

H e l l 0

2 4 %

9 7

2 2

2 2

e l l 0

Use f with a floating-point number.

Prints two digits after the decimal point.

Spaces are added so that the field width is 7.

Uses with a string.

You can format multiple values at once.

Strings are right -justified by default.

Use a negative field width to left-justify.

To add a percent sign to the output, use %%.

22. Wr ite statements to prompt for and read the us er's age.

23. What is problematic about the following stateme nt sequence?
userinpu t = input("Please enter th e unit pr ice : ")
unitPri ce = int(userinput)

24. What is probl emat ic about the following statement sequence?
userinput = input("Please enter the number of ca ns ")
ca ns= int(userinput)

25 . What is the output of the following statement sequence?

volume = 10
print("The total volume i s %5d" % volume)

26. Using th e string format operator, print the values of the variab les bottle s and
cans so that the output looks like this:
Bott l es: 8
Cans: 24

The numbers to the right should lin e up. (You may assume that the numbers are
integers and have at most 8 digits.)

Practice It Now yo u can try these exercises at the end of th e chapt er: R2.10, P2.6, P2.7.

58 Chapter 2 Programming with Numbers and Str ings

Programming Tip 2.4 Don't Wait to Convert

Whe n obtai nin g numerical values from input, y ou should convert the st ring representat ion to
the corresponding numerical value immediately aft er the input operation.

Obtain the string and save it in a tempor ary variabl e that is th en conv erted to a nu mbe r by
th e next statement . Don't save the stri ng representat ion and conv ert it to a numerical value
every time it's needed in a comp utat ion:

uni tPri ce = input ("Enter the unit price : ")
pricel = floa t(unitPrice)
pri ce2 = 12 * fl oat (uni tPri ce) # Bad style

It is bad style to repeat the same comp uta tion multiple times. And if y ou wai t, you could for­
get to per for m the convers ion.

Instead, convert the stri ng input immediatel y to a number:

unitPricelnput = input("Enter the unit price: ")
uni tPri ce = fl oat (uni tPri celnput) # Do this immediately after reading the input
pricel = unitPrice
price2 = 12 * unitPrice

Or, even better, combine the calls to input and fl oat in a single statement:

unitPrice = float(input("Enter the unit price : "))

The string returned by the input function is passed directl y to the fl oat function not saved in
a variable. '

Writing Simple Programs

Thi s H ow To shows you how to tu rn a prob lem statement into pseudocode and, ultimately, a
Python p rog ram.

Problem _ Statement Wr ite a program that simulates a vending machine. A customer
s~lects an item for p urch~se and ins_erts a bill into the vending machine. The vending machine
dispenses the p ur chased item and gives change. Assume that all item prices are mu ltip les of 25
cent s, and the machin e gives all change in do llar coins and quarters. Your task is to compute
how many coins of each type to r eturn .

Step 1 Und erstand th e problem: What are the inpu ts? What are th e d esir ed outpu ts ?

In th is prob lem, there are two inputs:

• Th e denom ination of th e bill that the customer inserts

• Th e pri ce of the purchas ed item

A vending machine takes hills
and gives change in coins .

p

Step 2

2.5 Input and Output 59

Th ere are two desired outputs:

• The number of dollar coins that the machine returns

• The number of quarters that the machine returns

Work out examples by hand.

Thi s is a very important step. If yo u can't comp ute a coup le of solutions by hand, it's unlikely
that you'll be able to write a program that automates the computation.

Le t's assume that a customer purchased an item that cost $2.25 and inserted a $5 bill. The
customer is due $2.75, or two dollar coins and three quarters , in change.

That is easy for yo u to see, but how can a Pyt hon program come to the same conclusion?
T he key is to work in pennies, not dollars. The change due the customer is 275 pennies. Divid­
ing by 100 yields 2, the number of dollars. Dividing the remainder (75) by 25 yields 3, the
number of quarters.

Step 3 Write pseudocode for computing the answers.

In the previous step, you worked out a specific instance of the problem . You now need to
come up w ith a method that wo rks in general.

Given an arbitrary item price and payment, how can you compute the coins due? First,
compute the change due in pennies:

change due= 100 x bill value - item price in pennies

To get the dollar s, divid e by 100 and discard the fractional part:

num dollar coins= change due divided by 100 (without the fractional part)

If you prefer, you can use the Python symbol for floor division.

num dollar coins = change due// 100
But you don't have to . Th e purpose of pseudocode is to describe the computatio n in a hum anly
readable form, not to use the syntax of a pa rticular programm ing language.

The rema ining change due can be computed in two ways. If you are awar e that one can
compute the remainder of a floor division (in Python, with th e modulus operator), you can
simpl y compute

change due = remainder of dividing change due by 100
Alternativel y, su btr act the penn y value of the dollar coins from th e chan ge due:

change due = change due · 100 x num dollar coins

To get the quart ers due , divide by 25:

num quarters = change due// 2S

Step 4 Declare the variables and constants that you need, and decide what types of values they hold.

Here, we have five var iables:

• billVal ue

• i temPri ce

• changeDue

• do 11 a rCoi n s

• quarters

Should we introduce constants to expla in 100 and 25 as PENNIES_PER_DOLLAR and PENNIES_PER_
QUARTER? Doing so wi ll make it easier to convert th e program to internationa l mark ets, so we
wi ll take this step.

Because we use floor division and the modulus ope rator, we wan t all values to be integers.

n1
11

I

60 Chapter 2 Programming with Numbers and Strings

Step 5 Turn th e pseud ocode into Python sta tements.

If yo u did a thoro ugh job with the pseudocode, this step should be easy. Of course, yo u have
to kn ow how to expres s mathematical opera tions (such as floor division and modulus) in
Py thon.

changeDue = PENNIES_PER_DOLLAR * bill Value - it emPrice
dollarCoins = changeDue // PENNIES_PER_DOLLAR
changeDue = changeDue % PENNIES_PER_DOLLAR
quarters = changeDue // PENNIES_PER_QUARTER

Step 6 Provide input and output.

Befor e startin g th e computation, we prompt the user for the bill value and item price:

userlnput = input("Ent er bill value (1 = $1 bill, 5 = $5 bill, etc.) : ")
bil lValue = int(userlnp ut)
userlnput = input("Enter item price in pennies: ")
itemPrice = int(userlnput)

When the computation is finished, we displ ay th e result. For extra credit , we format th e out ­
put strin gs to make sure th at the output lines up neatly:

print("Dollar coins: %6d" % dolla rCoins)
print ("Quarter s: %6d" % quarte rs)

Step 7 Pro vide a Py thon pro gram.

Your computation needs to be placed into a program. Find a nam e for the program that
describes the purpo se of the computati on. In ou r example , we will choose the name vending.

In th e program, you need to declar e co nstant s and variables (Step 4), carry out comput a­
~ions (Step 5), and provide input and output (Step 6). Clearly, you will want to first get th e
mput, th en do the computations, and finally show the output. Define the constants at the
beginnin g of th e prog ram, and define each variable just before it is needed .

Here is th e complete pro gram:

ch0 2 /how _to _ 1 /vending.py

1 ##
2 # This program simulates a vendin g machin e that gives change.
3 #
4
5 # Define constants.
6 PENNIES_PER_DOLLAR = 100
7 PENNIES_PER_QUARTER = 25
8
9 # Ob tain input fro m user.

10 use rlnput = i nput ("Ente r bill value (1 = $1 bi ll, 5 $5 bill, et c .) : ")
11 bill Valu e = int (userl nput)
12 userl nput = input ("Ent er i tem pri ce in pennies: ")
13 itemPrice = int (userlnput)
14
15 # Co mpute change du e.
16 changeDue = PENNIES_PER_DOLLAR * billValue - itemPric e
1 7 do 11 arCoi ns = changeDue / / PENNIES_PER_DOLLAR
18 changeDue = changeDue % PENNIES_PER_DOLLAR
19 quart ers= changeDue // PENNIES_PER_QUARTER
20
21 # Print change due.
22 pri nt ("Dolla r coins: %6d" % dollarCoins)
23 pri nt ("Quarters: %6d" % quarters)

Program Run

Enter bill value (1 = Sl bill, 5 = $5 bi ll , etc.): 5
Enter item price in pennies: 225
Dollar coins : 2
Quarters: 3

Computing the Cost of Stamps

2.5 lnputandOutput 61

Problem Statement Simul ate a postage stamp vending machine. A customer inserts dol­
lar bills into the vending machine and th en pu shes a "purchase" button. Th e vending machine
gives out as many first-class stamp s as th e customer paid for, and r eturn s th e change in penn y
(one-cent) stamps . A first- class stam p cost 44 cents at the tim e this book was written.

Step 1 Understand the prob lem: W hat are the input s? What are th e desired outputs?

In this problem, ther e is one inpu t:

• The amount of mon ey th e customer inserts

Th ere are tw o desired output s:

• The num ber of first-class stamps the machin e return s

• The numb er of penny stamps the machine returns

Step 2 Work out examples by hand.

Let' s assume that a first -class stamp costs 44 cents and the custo mer inserts $1.00. That' s
enough for two stamps (88 cents) but not enough for thr ee stamps ($1.32). Therefore, th e
machin e returns two first -class stamps and 12 penny stamp s.

Step 3 Writ e pseud oco de for computin g the answers.

Given an amou nt of money and the price of a first -class stamp, how can you comp ut e how
man y first -class stamp s can be pur chased with the mon ey? Clearl y, the answer is related to the
quot ient

amount of money
price of first-class stamp

Fo r example, supp ose the custom er paid $1.00. Use a pocket calculator to compu te the quo­
tient : $1.00/$0.44 = 2.27.

Ho w do yo u get "2 stamps" out of 2.27? It 's the quotient w ithou t th e fractiona l part. In
Pyth on, this is easy to comput e if bo th argum ents are integ ers. Th erefore, let 's switc h our
comput atio n to pennies. Then we have

number of first-class stamps = 100 / 44 (without remainder)

What if the user input s two doll ars? Then the num erator becomes 200. What if the price of a
stamp goes up? A more general equ ation is

number of first-class stamps = 100 x dollars I price of first-class stamps in cents (without remainder)

How about th e chan ge? H ere is one way of co mputin g it. When the custo mer gets the stamp s,
the change is the customer payment, reduced by the value of the stamps purchased. In our
examp le, the chan ge is 12 cents -th e differ ence between 100 and 2 · 44. H ere is the general
formul a:

change = 100 x dollars - number of first-class stamps x price of first-class stamp

62 Chapter 2 Programming with Numbers and Strings

Step 4 Define t he varia bles and cons tants that y ou need , and decid e wha t types of values they hold.

Step 5

Step 6

Step 7

Here, we have three varia bles:

• dollars
• firstClassStamps
• change

There is one constant, FIRST _CLASS_STAMP _PRICE. By using a constant, we can change the pric e in
one place without having to search and replace every occurrence of 44 used as the stamp price
in the program.

The variabl e dollars and consta nt FIRST_CLASS_STAMP _PRICE must be integers because the
computation of fi rstCl assStamps uses floor division. Th e remaining variables are also integers,
counting th e number of first-class and penny stamps.

Turn the pseudocode into Py thon statements.

Our comp utation depends on the number of dollars that th e user provides. Translating the
math into Python yields the following statements:

firstClassStamps = 100 *dollars// FIRST_CLASS_STAMP_PRICE
change= 100 * dollars - firstClassStamps * FIRST_CLASS_STAMP_PRICE

Provide input and ou tput.

Before the computation, we prompt the user for the number of dollars and obtain the va lue:

dollarStr = input("Enter number of dollars: ")
dollars= in t (dollarStr)

When th e computation is finished, we display the result.

print(" First cl ass stamps: %6d" % fi rstCl assStamps)
print("Penny stamps: %6d" % change)

Write a Py thon program.

Here is the complete progr am:

ch02/worked _example _2/stamps.py

1 ##

2 # This program sim ulates a stamp machin e th at receives do llar bill s and
3 # di sp enses fir st class and p enny stamp s.
4 #
5
6 # D efine t he p ri ce of a stamp in p enni es.
7 FI RST_CLASS_STAMP_PRICE = 44
8
9 # Obtai n the nu mb er of do llars.

10 dollar Str = inp ut ("Enter number of dollars: ")
11 dollar s = in t (dollarStr)
12
13 # C ompu te and prin t the n umb er o f stamp s to dispen se.
14 firstClassStamps = 100 *dollars// FIRST_CLASS_STAMP_PRICE
15 change= 100 * dollars - firstClassStamps * FIRST_CLASS_STAMP_PRICE
16 print ("Fi rs t cl ass st amps: %6d" % fir stClassStamps)
17 pr i nt ("Penny s t amps : %6d" % change)

Program Run

Enter number of dollars: 4
First class stamps : 9
Penny stamps: 4

2.6 Graphics: Simple Drawings 63

Computing & Society 2.2 The Pentium Floating-Point Bug

In l 994, Intel Corporation released what was
then its most powerful processor, the Pentium.
Unlike previous generations of its processors, it

Now Intel had a real problem on its hands. It figured that
the cost of replacing all Pentium processors that it had sold
so far would cost a great deal of money . Intel already had
more orders for the chip than it could produce, and it would
be particularly galling to have to give out the scarce chips

had a very fast floating-point unit. Intel's goal was to com­
pete aggressively with the makers of higher-end processors
for engineering workstations. The Pentium was a huge suc ­
cess immediately.

In the summer of l 994, Dr. Thomas Nicely of Lynchburg
College in Virginia ran an extensive set of computations
to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his the ­
ory predicted , even after he took into account the inevita­
ble roundoff errors. Then Dr. Nicely noted that the same
prog ram did produce the correct results when running on
the slower 486 processor that preceded the Pentium in
Intel's lineup. This sho uld not have happened. The optimal
roundo ff behavior of float ing-point calcu lations has been
standardized by the Institute for Electrical and Electronics
Engineers (IEEE) and Intel claimed to adhere to the IEEE stan­
dard in both the 486 and the Pentium processors. Upon fur­
ther checking, Dr. Nicely discovered that indeed there was
a very small set of numbers for which the product of two
numbe rs was computed differently on the two processors.
For example,

as free replacements instead of selling them. Intel's manage­
ment decided to punt on the issue and initially offered to
replace the processors only for those customers who could
prove that their work required absolute precision in mathe- "°
matical calculations. Naturally, that did not go over well with ~
the hundreds of thousands of customers who had paid retail ~
prices of $700 and more for a Pentium chip and did not want 1
to live with the nagging feeling that perhaps, one day, their·'§
income tax prog ram would produce a faulty return. .~

Ultimately, Intel caved in to public demand and replaced ;:3
all defective chips, at a cost of about 475 million dollars. ~-

"' ~
Pentium FDIV error ~

4,195,835 - ((4, 195,835/3, 145,727) X 3,145,727)

is mathematically equal to 0, and it did compute as O on a
486 processor. On his Pentium pro cessor the result was 2 56.

1,333840000

1.333820000

1.333800000

1.333780000

t 1.333760000

1.333740000

1.:U3'120000 As it turned out, Intel had independently discovered
t he bug in its testing and had sta rted to produce chips that
fixed it. The bug was caused by an erro r in a table that was
used to spee d up the floating -point multiplication algorithm
of the processor. Intel determined that th e problem was
exceeding ly rare. They claimed that under normal use, a
typical consumer wou ld only notice the problem once every
2 7,000 years. Unfortunate ly for Intel, Dr. Nicely had not
been a normal user.

This graph shows a set of numbers for which the original
Pentium processor obtained the wrong quotient.

2.6 Graphics: Simple Drawin s
There are time s when yo u may want to includ e si mpl e draw­
in gs su ch as figures, graphs, or charts in your programs.
Although th e Python librar y provides a module for crea tin g
full graphica l applications, it is be yo nd the scope of this book.

To h elp y ou crea te simple drawings, we h ave includ ed an
ezgrap hic s module wit h the book that is a simp lifi ed vers ion
of Python' s more complex librar y m o dul e. The module code
and u sage instructions are included w ith the source code on
this b ook's companion web site . In the following sections,
yo u wi ll learn all abo ut this module, and how to use it to cre ­
ate simple drawing s that cons ist of basic geometr ic sh apes
and text .

You can make simple
drawings out of lines,
rectangles, and circles.

"' ·;:;
0

Vl

olJ
.§'

&
~

.E

"
.~

.5
" >,
0
:i:::

0

I

I !

I)
I

6 4 Chapter 2 Programming with Numbers and Strings

A graphics window
is used for creating
graphical drawings.

Geometric shape s
and text are drawn
on a canvas that
is contained in a
graphics windo w.

2.6. l Creating a Window

A graphica l application shows information inside a window on the desktop with a
rectangular area and a titl e bar, as sho wn in Figure 6. In the ezgraphi cs module, this
window is called a graphics wind ow.

To create a graphica l application using the ezgrap hi cs module, carry out th e
following:

l . Impor t the Graphi csWi ndow class:

from ezgraphics import GraphicsWindow

As you will see in Chapter 9, a class defines the behavior of its objects. We will
create a sin gle object of the Graphi csWi ndow class and call methods on it.

2 . Create a graphics w ind ow :

win= GraphicsWindow()

The new window will automatically be shown on the desktop and cont ain a
canvas that is 400 pixels wide by 400 pixels tall. To create a graphics wind ow
with a canvas that is of a specific size, y ou can specify the width and height of
the canvas as argument s:

win = GraphicsWindow(SOO, 500)

When a graphics window is created, th e object repr esenting the window is
returned and must be stored in a variable , as it w ill be needed in the follo wing
steps. Several m ethod s that can be used wit h a Graphi csWi ndow object are shown
in Table 10.

3 . Access the canvas contained in the grap hics w indo w :

canvas = win.can vas()

To create a dra wing, yo u draw th e geometri c shapes on a canvas ju st as an arti st
would to create a p ainting. An object of the Graphic sCanvas class is automatically

Window

Canvas

D
Graphical shapes are drawn

on the canvas.

Figure 6 A Graphics Window

Close button

2.6 Graphics: Simple Drawings 65

created when you create the Graphi csWi ndow object. The canvas method gives you
access to th e object represent ing that canvas . It will be used in the next step.

4 . Create your drawing.

Geometr ic sh apes and text are dr awn on th e canvas using methods defined in
th e Graphi csCanvas class. These methods will be describ ed in th e following
sections . For now, we' ll draw a rectan gle:

canvas.drawRect(lS, 10, 20, 30)

5. Wait for th e user to close th e graph ics window :

win. wai t ()

After drawing th e scene on th e canvas, th e program has to stop or pause and
wait for the user to close the window (by clicking the close button). Without
this statement, th e progra m wou ld terminat e immediately and the graphics
windo w wou ld disappe ar, leaving no time for y ou to see yo ur drawing.

The simple progr am belo w produc es th e graphics w indo w show n in Figure 6.

ch02 / sec06/window.py

1
2
3
4
5
6
7

This program creates a graphics wind ow with a rectangle. It provides the
template used with all of the graphical programs used in the book.

from ezgra phics impor t Graphi csWindow

8 # Cre ate the windo w and access the canvas.
9 win= Graphic sWi ndow()

1 0 canvas = win. canvas()
11
12
13
14
15
16

Draw on the canvas.
canvas .drawRect (S, 10 , 20, 30)

Wait for the user to close the window.
win .wait()

Table 1 0 Graphi csWi ndow Methods

Method

w = Graphi csWindow()
w = Graphi csWi ndow(width, height)

w .canvas()

w .wait ()

Descr iption

Creates a new graphi cs win dow with an
empty canvas. Th e size of th e canvas is
400 x 400 unless ano the r size is specified.

Re turns th e object representin g the canvas
cont ained in the graphi cs win do w.

Keeps the graphics wind ow open and waits
for the user to click th e" close" button.

I

I

I I

66 Chapter 2 Programming with Number s and Strings

The canvas has
methods for drawing
lines, rectangles, and
other shapes.

2 .6.2 Lines and Polygons

To draw a shape on th e canvas, you call one of the "dr aw" meth ods d efined for a
canvas. The call

canvas . drawli ne(xl, yl, x2, y2)

dr aws a line on the canvas between the p oints (xi, Yi) and (xi, Y2), The call

canvas.d rawRect(x , y , wi dth , hei ght)

draws a rectan gle th at has its upp er-left corne r p osit ioned at (x, y) and the given wid th
and height.

Ge ometri c shapes and text are dr awn on a can­
vas by specify ing p oints in th e two -dim ension al
discrete Cartesian coordin ate system. Th e coor -
dinate sys tem, howeve r, is different from th e on e
used in mathem atic s. The origin (0, 0) is at the
upper -left corn er of th e canvas and th e y-co ordi ­
nate grows down ward.

The poi nts on the canvas corr esp ond to pixels
on th e screen. Thu s, the actu al size of the canvas
and the geom etri c shape s depends on th e resolu -
tion of y our screen .

Here is th e cod e for a simp le pro gram th at
draws th e bar chart sh own in Figur e 7.

Figure 7
Draw ing a Bar Chart

ch02/sec06/barchartl .py

1
2
3
4
5
6
7
8
9

10

This program dr aws thr ee rectan gles on a canvas.

fr om ezgr aphics import Graphic sWindow

Create the window and access the canvas.
win= GraphicsWindow(400, 200)
canvas = wi n. canvas()

11 # Dra w on the canvas.
12 canvas . dra wRect(O, 10 ,
13 canvas . d rawRect CO, 30 ,
14 canvas. drawRect(O, SO,

200, 10)
300, 10)
100, 10)

15
16
17

Wait for th e user to close th e window.
win.wait ()

(0, 0) X

• (20, 10)

• (10, 20)

y

p

The canvas stores
the current drawing
parameters used
to draw shapes
and text.

Colors can be
specified by name
or by their red,
green, and blue
components.

2.6 Graphics : Simp le Draw ings 67

2.6.3 Filled Shapes and Color

Th e canvas stores the drawi n g p arameters (the cur rent color, font, line width, and so
on) that are used for drawing sh apes and text. When you first start dr awing on a can­
vas, all shapes are drawn using a black pen .

To change th e pen color, use one of th e meth od calls,

canvas.setOutline(red, green, blue)
canvas.setOutline(colorJ\[aine)

The method arguments can be inte ger values between O and 255 that sp ecify a color
valu e, or on e of th e strings describi n g a color in Table 11.

or

For examp le, to draw a red rectang le, call

canvas.set0utline(255 , 0, 0)
canvas.drawRect(lO , 20, 100, 50)

canvas .setOutl i ne("red")
canvas .drawRect(l O, 20, 100, SO)

The geometr ic shapes can be draw n in on e of three sty les- outlin ed, filled, or out­
lined and filled.

[]
Outlined Filled Outlin ed and filled

The style used to draw a specific shape depe nd s on the cur rent fill color and outline
color as set in th e canvas . If you use th e default settin g (n ot chang ing the fill or out ­
line), shap es are outli ned in black and th ere is no fill color.

To set the fill color, use one of the meth od calls

canvas .set Fill (red , green , blue)
canvas . set Fi 11 (colorJ\[aine)

The following statements

canvas .setOutl i ne("black")
canvas .set Fill (O, 255, 0)
canvas .dr awRect(lO, 20, 100, 50)

draw a rectangle th at is ou tlined in black and filled with green :

Table 11 Commo n Colo r Names

Color Name Color Name Color Name

"black" "magenta " "maroon"

"blue" "yell ow" "dark blue"

"red" "whi t e" "dark red"

"green" "gray" "dark green"

"cya n" "gold" "dark cyan"

Color Name

"pink"

"orange"

"sea green"

"l ight gray"

"tan"

68

. I
I

Chapter 2 Programming with Numbers and Strings

Table 12 Graphi csCanvas Color Methods

Method

c. setColor(colorName)
c.setColor (red, green , blt{e)

c. setFill ()
c. setFil l (colorName)
c.s etFill (red, green, blue)

c.s etOutline ()
c.se tOutline(colorName)
c.s etOutl ine(red, green, blue)

Description

Sets both the fill and outline color to the same
color. Colo r can be set by the colorName or by
values for its red, green, and blue components.
(See Section 4.10 for more about RGB values.)

Sets the color used to fill a geometr ic shape. If no
argument is given, the fill co lor is cleared.

Sets the color used to draw lines and text. If no
argument is given, the outline color is cleared.

To fill without an outline, call the setOutl i ne method with no arguments:
I

canvas.setOutline() # Clears the outline color

You can also clear the fill color by calling the set Fi 11 method with no arguments. Thi s
is necessary if you set a fill color in order to draw a filled shape, but then wo uld like to
draw an unfilled shape.

Finally, you can set both fill and outline color to the same color with the setColor

method. For example, the call

canvas.setColor("red")

sets both the fill and outline color to red .
The following program is a version of the barchar tl. py prog ram modified to create

three filled rectangles, as shown in Figure 8 .

Figure 8
Drawing a Bar Chart wit h Color Bars

ch02/sec06/barchart2.py

1
2
3
4
5
6

This programs draws three colored rectangles on a canvas.

from ezgraphics import GraphicsWindow

7 # Crea te the window and access the canvas.
8 win = Graphic sWindow(400, 200)
9 ca nvas = win. canvas()

10
11
12

Draw on the canvas.
ca nvas .setCo l or("red")

13 canvas.drawRect(O, 10 , 200 , 10)
14
15 canvas . setColor("green")
16 canvas.drawRect(O, 30 , 300 , 10)
17
18 canvas. setColor("bl ue")
19 canvas .drawRect(O, 50, 100 , 10)
20
21 # Wait for the user to close the window.
22 win.wait()

2.6 Graphics: Simple Drawings

2 .6.4 Ovals, Circles, and Text

69

Now that you've learned how to draw lines and rectangles, let's turn to additional
graphical elements.

To draw an oval, you specify its bounding box (see Figure 9) in the same way that
you would specify a rectangle, namely by the x- and y-coordinates of the top -left
corner and the width and height of the box. To draw an oval, use the method call

canvas .dr awOval(x, y, wid th, height)

As with a rectangle, the oval wi ll be drawn filled, with an outline, or both depending
on the current drawing context. To draw a circle, set the width and height to the same
values:

canvas.drawOval(x, y, diameter, diameter)

Notice that (x, y) is the top- left corner of the bounding box, not the center of the
circle.

(x, y) Width

\----------~- ~
' ' ' '

Figure 9 An Oval and it s Bounding Box

You often want to put text inside a dra wing, for example, to label some of the parts.
Use the canvas method drawText to draw a strin g anyw here on a canvas. You must
specify th e string and the x- and y-coordinates of the top-l eft corner of the bounding
box (the "anchor po int"-see Figure 10). For examp le

canvas. drawText(SO, 100, "Message")

Figure 1 O
Bound ing Box and Anchor Point

Anchor point

~M--------------------------:
i essage L ____________________________ J

70

• I

Chapter 2 Programming with Numbers and Strings

Table 13 Graphi csCanvas Drawing Methods

Method Result Notes

c.drawRect(x, y , width, height)

c. d rawOva l(x, y, width, height)

~

CJ

D

(x 1, y 1) and (xi,y 2) are the endpoints.

(x, y) is the top -left corner.

(x, y) is the top-left corne r of th e box that
bounds the ellipse. To draw a circle, use the
same value for width and height.

' -

c.drawText(x, y, text)

Table 13 provides a list of drawing methods available for use with the canvas.

27. How do you modify the program in Section 2.6.2 to draw two squares?

28. What happens if you call drawOva l instead of drawRect in the program of
Section 2.6.2?

29. Give instructions to draw a circle with center (100, 100) and radius 25.

30. Give instruct ions to draw a letter "V" by drawing two line segments.

31. Give instructions to draw a string consisting of the letter "V".

32. How do you draw a yellow square on a red background?

Practice It Now you can try these exercises at the end of the chapt er: P2.23, P2.24, P2.25.

Step 1

Graphics: Drawing Graphical Shapes

Suppose yo u want to write a program that displays graphical shapes such as cars, aliens, charts,
or any ot her images that can be obtained from rectangles, Jines, and ellipses. These instructions
give yo u a step-by-s tep procedure for decomposing a drawing into part s and impl ementin g a
program that produ ces the drawing.

Problem Statement Create a program to draw a national flag.

Determine th e shapes that you need for the drawing.

You can use the following shapes:

• Square s and rectangle s

• Circles and ovals

• Lines

The outlines of these shapes can be drawn in any color, and you can fill the insid es of the se
shapes with any color. You can also use text to label parts of your drawin g.

Some national flag designs consist of three equally wide sections of different colors, side by
side, as in the Italian flag shown below.

p

Step 2

Step 3

2.6 Graphics: Simple Drawings 71

You could draw such a flag using three rectangles. But if the middle rectangle is whi te, as it
is, for examp le, in the flag of Italy (green, white, red), it is easier and looks better to draw a line
on the top and bottom of the middle portion:

Two lines

1
.r::
u

"' ::,
~

---- ._ __________ __. @

Two rectang les

Find the coordina tes for the shapes.

You now need to find the exact positions for the geometric shapes.

• For rectangles, you need the x- and y-position of the top-left corner, the width, and the
height.

• For ellipses, you need th e top-left corner, width, and height of the bounding rectangle.

• For lines, you need the x- and y-positions of the start ing point and the end point.

• For text, you need the x- and y-position of the anchor point.

A commonly -used size for a window is 300 by 300 pixels. You may not want the flag crammed
all the way to the top, so perhaps the upper-left corner of the flag should be at point (100, 100).

Many flags, such as the flag of Italy, have a wid th: height ratio of 3 : 2. (You can often find
exact proportions for a particular flag by doing a bit of Intern et research on one of several
Flags of the World sites.) For examp le, if you make the flag 90 pixels wide, then it shou ld be 60
pixels tall. (Why not make it 100 pixels wide? Then the height wo uld be 100 · 2 / 3 = 67, wh ich
seems mor e awkward.)

Now you can comput e the coord inates of all the import ant points of the shape:

(100, 100) (130, 100) (160, 100)

(100, 160) (130, 160) (160, 160)

Write Python statements to draw the shapes.

In our examp le, there are two rectangles and two lines:

canvas.setColor("gre en")
canvas.drawRect(lOO, 100, 30, 60)

canvas. setColor("red")
canvas .drawRect(160, 100, 30, 60)

(190,100)

(190,160)

72 Chapter 2 Programmin g wi th Numbers and St rings

canvas.setColor("black")
canvas.drawline(130, 100, 160, 100)
canvas.drawline(130, 160, 160, 160)

If you are more ambitious, then you can express the coordinates in terms of a_few variables.
In the case of the flag, we have arb itrari ly chosen the top -left corner and the width. All other
coord inates follow from those choices . If you decide to follow the ambitious approach, then
the rectangles and lines are determined as follows:

canvas.drawRect(xleft, yTop, width/ 3, width * 2 / 3)

canvas.drawRect(xleft + 2 * width / 3, yTop, width / 3, width '' 2 / 3)

canvas.drawline(xleft +width/ 3, yTop, xleft +width* 2 / 3, yTop)
canvas.drawline(xlef t +width/ 3, yTop +widt h * 2 / 3,

xl eft +width* 2 / 3, yTop +width* 2 / 3)

Step 4 Write the program that creates the graphics window and includes the drawing instructions at
the proper spot in the template.

win = GraphicsWindow("The Italian Flag", 300, 300)
canvas= win.canvas()

Drawing instructions

win.wait()

The comp lete prog ram for drawing the flag is provided be low.

ch02/how _to_2/ italianflag.py

1 ##
2 # This program dr aws an Italian flag usin g the ezgraphi cs module.
3 #
4
5 from ezgraphics import GraphicsWindow
6
7 win = Graphi cs\~i ndow(300, 300)
8 canvas = win.canvas()
9

10 # D efin e variab les w ith the upp er-left pos ition and th e size.
11 xleft = 100
12 yTop = 100
13 width = 90
14
1 5 # D raw th e flag.
16 canvas . setColor("gree n")
17 canvas.drawRect(x Left, yTop, width/ 3, width'' 2 / 3)
18
19 canvas.setColor(" red")
20 canvas.drawRect(xleft + 2 * width/ 3, yTop, width/ 3 , wi dth '' 2 / 3)
21
22 canvas. setColor("bl ack")
23 canvas. drawl i ne(xleft + width / 3 , yTop, xleft + width '' 2 / 3, yTop)
24 canvas.drawline(xleft +width/ 3 , yTop +width* 2 / 3,
2 5 xleft + width * 2 / 3 , yTop + width * 2 / 3)
26
27 # Wa it for the use r to close the wind ow.
28 win.wait()

p

TO OLBOX 2. 1

2.6 Graphics: Sim ple Draw ings 73

Symbolic Processing with SymPy

This is the first of many optional "too lb ox" sectio ns in this book. Python is not only a very
nice programming language, but it has a large ecosystem of useful packages. If yo u need to
carry ou t comp lex computations in a particular problem domain, chances are that someone
has put together a library of code that gets you started. There are packages for sta tistics, dra w­
ing graphs and charts, sending e-mail, analyzing web page s, and many other tasks. Many of
rhem are developed by vo lunt eers and are freely available on the Internet.

In this section, you will be introduced to the SymP y package for sym bo lic mathematics.
In Section 2.2, you saw how to use Python ro compute the value of mathem at ical expr ession s
such as x ** 2 * si n(x) for a particular value of x. The SymPy package can do much more than
that. It can give you a plot of rhe function and compu te a wide variety of form ulas. If yo u ha ve
taken a calculus course, yo u know tha t there is a formula fo r computin g the derivative of a
product. SymPy knows these rules and can carry our all rhe tedious routine manipulations, so
that you don't have to. It is like having a calculus course in a box!

Of course, programs chat can process math formulas have been aro und for over fifty years,
bur SymPy has rwo great advantages. Ir is not a separ ate program, it is o ne yo u use within
Python. Second, other math programs come with their own programming languages that are
different from Python. When yo u use SymPy, yo ur investment in mastering Pytho n pays off.

Gett ing Started

Befo re being able to use a package such as SymPy, it must be installed on your system. Your
ins tructor may have given you specific installation instructions . If not, we recommend that
yo u follow the instructions at http :// horstmann.com/python4everyone/i nstal 1. html.

The activities in this sectio n wor k best when you run them in interactive mode (see Pro­
gramm ing Tip 1.1). And if you use the !Python conso le, you can get a very attractive display
of yo ur result s. If you follow our installation instructions, yo u can use the IPython console
in side the Spy der IDE.

The functionali ty of a thi rd -part y code package such as SymP y is organized in one or more
mod ules. You need to import the mod ules that you need, as described in Special Topi c 2.1.
H ere , we import th e entire cont ents of the sympy module:

fro m sympy import ''

Now we have access to th e funct ions in that module.

Working w ith Express ions

One useful fun ction is sympify, wh ich turns an expr ession containe d in a st ring into SymPy
form. For example,

f = sympi fy("x ** 2 ,., sin (x)")

When yo u print f , yo u will see

x''*2''sin(x)

What you get is a symbo lic expre ssion, not Python cod e. The letters x that you see in the dis­
play are not Py th on variables bu t symbols, a special data type that is manipu lated by SymPy.
You can see that by displ aying sympify(x * x ** 2). The result is

X *'' 3

SymP y kno w s th at x2 · x = x3.

Alternatively, yo u can first define the symbo lic expression x and store it in a variable. It
is convenient to name tha t variable x as wel l. Th en use operators and functions to build up a
SymPy expres sion:

x = sympi fy("x")
f = x ** 2 * sin(x)

74 Chapter 2 Programming w ith Number s and Strings

Figure 11
An !Python Noteb ook
w ith SymPy Comput at ion s

!Python _ - x

file ~it YieW ~mel _Magic 'fiindow tl_elp
I n (1) : f rom syinpy iJlport ~

In (2): init _pri nting()

In (3) : x = sympify("x" l

In (4) : f = x ~ .. 2 .. sin(x)

In (5) : f
Out[S]:

2 •
X S!Il!X l

In (6) : f * X
Out[6]:

3 .
X S ID<X>

In (7): plot(f)

60

20

-20

-40

~

-80

Out[7) : <sympy.plotting.plot.Plot at 8x7fa338Bc528

In [II) :

The sympy module contains definitions of the mathemat ical oper ators and functions for sym­
b_olic expressions, so you can comb ine sym bols in th e same way as you wou ld Python expres­
s10ns.

If you use the !Pyt hon notebook, yo u can d isplay resu lts in mathemat ical notatio n with the
comma nd

i ni t_pri nti ng ()

See Figure 11. We will use mathemat ical not ation for the rema inde r of this section . If you don't
have the !Pyth on notebook, everything will work, but you will see the form ulas in the p lain
computer notat ion.

As yo u have seen, working wit h symbol s is usefu l for simpl ify ing algebraic express ions.
Here are a few more example s:

expand((x - 1) * (x + 1)) # Yields x 2 - 1
expand((x - 1) ** 5) # Yields x 5 - 5x4 + 10x 3 - 10x2 + Sx - 1

Solving Equations

SymPy can solve quadratic equat ions and many ot hers . When you pass an expression to the
so 1 ve method, you get a list of values where the express ion equa ls zero.

solve(x**2 + 2 * x - 8) # Yields (-4, 2)
solve(sin(x) - cos(x)) # Yields (-31t/4, tt/4)

>
2.6 Graphics: Simple Draw ings 75

You still need to know something about mat hematics to interpre t th e results that you get.
There are infin itely many solutions to the second equation, because you can add 1tto any solu­
tion and get another. SymPy gives you two solutio ns from which you can derive the others .

SymPy can compu te the derivative:

di ff Cf) # Yields x 2 cos(x) + 2x sin(x)

Computi ng int egrals is just as easy:

g = i nteg rate(f) # - x 2 cos(x) + 2x sin(x) + 2 cos(x)

In a typ ical calculus prob lem, you often obtain the derivative or integra l of a function, and
th en compute the resu lting expression for a given value of x. Substitute a value for the vari­
able with the subs method, then turn th e expression into a floating-point value wit h the evalf
method:

result = g.s ubs(x, 0) .evalf() # result is 2.0

Fina lly, you may want to plot a func tion. Calling plot gives you a plot w ith x ranging from- 10
to 10. Fo r example,

plot (-x **2 * cos(x) + 2 * x * sin(x) + 2 * cos(x))

yields

~ 100

You can provid e a differ ent range for x, from - 20 to 20, like this:

pl ot (- x*''2 * cos(x) + 2 * x * sin(x) + 2 * cos(x), (x , -20, 20))

Here is the result:

~ 300

-20 20

- 200

- 300

-400

If you use th e !Python notebook, you can integrate p lots into th e not ebook. If pl ots are shown
in a separate window, use the directive

%matplotlib inline

As yo u have seen, SymPy can make quick work of your calculus assignment. It is also a great
reason for learning about Python libraries. The creators of SymPy have packaged a great
amoun t of expertise - name ly, how to manipulate math emati cal symbols - into a form that
you can use easily. Other Python packages that we will introduce thro ughou t the book pro ­
vide expe rtise from ot her domains that you can call upon in your pro grams.

-.- ,
I

II i
11,

1 1

I

76 Chapter 2 Programming w ith Numbers and Strings

CHAPTER SUMMARY

Declare variables with appropriate names and types.

• A variable is a stora ge lo cation with a name.

• An assignm ent statement stores a value in a variable.

• A variabl e is created th e first time it is assigned a valu e.

• Assignin g a valu e to an existin g variable repl aces th e previou sly sto red value.

• The assignment operator= does not denote math ematical equ ality.

• The data type of a value specifies ho w the valu e is sto red in th e comput er and
what oper ations can be performed on the valu e.

• Integers are whole numb ers without a fractional p art.

• Floatin g-point numb ers cont ain a fractional part .

• By convention, variable names should start with a lowercase
letter.

• Use con stants for valu es tha t shoul d remain un chan ged throughout your
program.

• Use comment s to add explanations for hu mans who read your code. The inter ­
preter ignore s comments.

Write arithmetic expressions in Python.

• Mixing int egers and float ing-point values in an arith metic expr ession y ields a
floatin g-point value.

• Th e// operator comput es floor division in whi ch the remainder is discarded.

• The % operator comput es the rem ainder of a floor division.

• A function can return a value that can be used as if it we re a literal value.

• Py th on has a standard libr ary th at pro vides func tions and data types for your
cod e.

• A librar y modul e must be import ed int o your prog ram before it can be used.

Carry out hand calculations when developing an algorithm.

• Pick conc rete values for a typ ical situation to use in a hand calcula tion .

Write programs that process strings.

• Strin gs are sequ ences of characters .

• A string lit eral denote s a p arti cular string .

• Th e l en function return s the nu mber of characters in a
stnn g.

• U se th e+ operator to concatenate strin gs; th at is, to put them
tog ether to yield a longer strin g.

• A str ing can be repeated using the'' operator .

• Th e str funct ion convert s an int eger or float ing-po int value to a
stnn g.

0 R D

Review Exercises 77

• The i nt and fl oat functions convert a string cont aining a numb er to th e numerical
value.

• String p osition s are count ed starting with 0.

Write programs that read user input and print formatted output .

• Use the i nput fun ctio n to read keyboard input.

• To read an integer or float ing- point valu e, use th e input function followed by the
int or fl oat function.

• Us e the string format operator to specify how values should be formatted.

Make simple graphica l drawings.

• A graphic s window is used for creatin g graphi cal drawings .

• Geometric shapes and text are drawn on a canvas that is contain ed in a graphics
wind ow.

• Th e canvas has methods for dr awing lines , rectangles, and other shapes .

• Th e canvas stores the current drawing parameters used to draw sh apes and text.

• Colors can be specified by name or by their red, green, and blue component s.

REVIEW EXERCISES

• R2.1 What is the value of mystery afte r thi s sequence of statements?

myste ry= 1
mystery= 1 - 2 * mystery
mystery= myste ry + 1

• R2.2 What is the valu e of mystery after this sequ ence of statements?

mystery= 1
mystery= mystery+ 1
mystery= 1 - 2 * mystery

• • R2.3 Wri te the following mathematic al expressions in Python .

1 2 FV = PV . (1 + INT)YRS
S = SO + Vot + 2 gt 100

a3
G = 4n 2 --- --

p2(m1 + m2)
c = ~a 2 + b2 - 2ab cosy

• • R2.4 Write th e followin g Pyt hon expressio ns in math ematical notatio n.

a. dm = m * (sqrt (l + v / c) / sqrt(l - v / c) - 1)

b. volume = pi * r ,., r ,., h

c. volume= 4 * pi * r ** 3 / 3

d. z = sqrt(x * x + y '' y)

I I

78 Chapter 2 Programming w it h Numbers and Strings

• • R2.S What are th e values of the following express ion s? In each line, assume that

X = 2.5
y = -1. 5
m = 18
n = 4

a. x + n * y - Cx + n) * y
b. m I I n + m % n

C. 5 * X - n I 5

d. 1 - Cl - Cl - Cl - Cl - n))))
e. sqrtCsqrtCn))

• R2.6 What are the values of th e follow ing express ion s, assuming that n is 17 and mis 18?

a. n I I 10 + n % 10
b. n % 2 + m % 2

c. Cm + n) I I 2

d. Cm + n) I 2 .0

e. i nt CO. 5 * Cm + n))
f. intCroundC0.5 * Cm+ n)))

• • R2. 7 What are the value s of th e following expressions? In each line, assume that

s = "Hello"
t = "World"

a. lenCs) + lenCt)
b. s [1] + s [2]

C, s[lenCs) II 2]
d. s + t

e. t + s

f . s 1
' 2

• R2.8 Find at least three compile-time errors in the following program.

int X = 2
printCx, squared i s , x * x)
xcubed = x *** 3

• • R2.9 Find two run-time errors in th e follo w ing pro gram.

from math import sqrt
X = 2
y = 4
printC"The product of ", x, "and", y, "is", x + y)
pri ntC"The root of their difference is ", sqrtCx - y))

• R2.10 Cons ider the following code segment.

purchase = 19.93
payment = 20.00
change = payment - purchase
printCchange)

Th e code segment prints the change as 0.07000000000000028. Exp lain w hy. Give a
reconun endat ion to improve the code so that u sers wi ll not be confused .

• R2.11 Explain the differences between 2, 2.0, ' 2' , "2", and "2.0".

p

Review Exerc ises 79

• R2.12 Explain what each of the following program segments computes.

a. X = 2
y = X + X

b. s = 11 211

t = s + s

• • R2.13 Write pseudocode for a program that reads a word and then prints the first charac ter,
the last character, and the character in th e middle . For example, if the input is Harry,
th e program prints H y r. If the word has even length , print the ch aracter right before
the middl e.

• • R2, 14 Wr ite pseudocode for a program that prompts the user to en ter a name (such as H ar­
old James Morgan) and then prints a monogram consisting of the initi al lette rs of the
first, midd le, and last name (such as HJM).

• • • R2.15 Write pseudocode for a program that com put es the first and last digit of a num ­
ber. For example, if the input is 23456, the program sho uld print 2 and 6. Use% and
logCx, 10).

• R2, 16 Modify the pseudocode for the program in How To 2.1 so that the pro gram gives
ch ange in qu arters, dimes, and nicke ls. You can assume that the price is a multip le of
5 cents. To develop yo ur pseudocode, first wo rk with a couple of specific value s.

• • R2. 1 7 A cocktail sha ker is composed of three cone sections.

Using realistic values for the radii and heights , compute the total vo lume , using th e
formula given in Self Check 17 for a cone section. Then develop an algorithm that
works for arbitrary dim ensions.

• •• R2.18 You are cutting off a piec e of pie like thi s, where c is the lengt h of th e strai ght part
(called the chord length) and h is the h eight of the piece.

There is an appro ximate formu la for the area :

h3
A == 1-ch + -

3 2c
Howe ver, h is not so easy to mea sure, whereas the diameter d
of a pie is u su ally well -kno w n. Calculate the area where the
diameter of the pi e is 12 in ches and the chord len gth of the
segment is 10 inches. Genera lize to an algor ithm that yie ld s
the area for any diameter and chord length.

C

d

• • R2.19 The following pseudocode describes ho w to obtain the name of a day, given the day
number (0 = Sunday , 1 = Monday, and so on.)

Define a string called names containing "SunMonTueWedThuFriSat".
Compute the starting position as 3 x the day number.
Get the characters at position, position + 1, position + 2.
Concatenate them.

Check this pseudocode, usin g th e day number 4. Draw a diagram of the string that is
bein g computed , simil ar to Figure 4.

• • R2.20 The follo win g pseudocode describes ho w to swap two letters in a word.

We are given a string myString and two letters 11 and 12•

Change all occurrences of 11 to the character*

I

,,

. I

I I

J I

I
. I

I

80 Chapter 2 Programming w ith Numbers and Str ings

Change all occurrences of 12 to 11
Change all occurrences of* to 12•

Check this pseudocode, using the string "marmal ade" and the lette rs a and e.

· • • R2.21 Ho w do you get the firs t character of a strin g? The last character? The middle char­
acter (if the lengt h is odd)? The midd le two characters (if th e length is even?)

• R2.22 This chapter contai ns a number of recommendations regarding variables and con ­
stants th at mak e progr ams easier to read and maintain. Briefly summa riz e these
recomm end ation s.

• R2,23 Give in struc tions for drawin g an outline d oval within its boundin g box. U se green
lin es for the boundin g box.

• Toolbox R2.24 Ho w do you compute th e derivative and integra l of f(x) = x2 in Sym Py?

• Toolbox R2.25 What is diff (in teg rate(f)) in SymPy ?

• Toolbox R2.2 H ow wo uld you write a Pyt hon program that uses SymPy to displa y th e solution
for an arb itrary quadrat ic equat ion, ax2 + bx + c = 0?

• Toolbox R2,27 Ho w would yo u use Sy mPy to plot th e curve y = sin(l / x), where x rang es from - 0.5
to 0.5?

• Toolbox R2.2 When you plot si n(x) / x, what do you guess th e limit is as x appro aches zero?

PROGRAMM I N G EX ERC I SES

• P2.1

• P2.2

• P2.3

• • P2.4

Write a program th at displays the dime nsion s of a lette r-size (8.5 x 11 inch) sh eet of
paper in millimeters. Th ere are 25.4 millimet ers per inch . Use constant s and com­
ments 111 your progra m.

Write a program that comput es and displa ys the p erimeter of a letter- size (8.5 x 11
inch) sheet of paper and the length of its diagona l.

Write a pro gram that reads a number and displays th e square, cube, and fourt h
powe r. Use the '"" ope rator only for the fourt h power .

Write a pro gram that prompt s the user for two int egers and then print s

• The sum

• The differen ce

• Th e produ ct

• Th e average

• Th e distance (absolut e value of th e differen ce)

• Th e maxim um (the larger of the two)

• The minimu m (th e smaller of th e two)

Hint: Pyth on defin es max and min functions th at accept a sequence of values, each
sep arat ed with a comma.

f

..

Programming Exercises 81

• • P2.5 Enhance th e output of Exercise P2.4 so that the numbers are prop erly aligned:

Sum: 45
Difference: -5
Product: 500
Average: 22. 50
Di stance : 5
Maximum: 25
Mi nimum: 20

• • P2.6 Write a program that prompts the u ser for a measurement in meters and then con­
vert s it to mil es, feet, and inches.

• P2. 7 Write a pro gram that prompts the user for a rad ius and then prints

• The area and circumference of a circle with that radius

• The vo lum e and surface area of a sphere with that radius

• • P2.8 Write a pro gram th at asks th e user for th e lengths of th e sides of a rectan gle. Then
print

• The area and perimeter of th e rectangle

• The length of the diagonal

• P2.9 Impro ve the program discu ssed in How To 2.1 to allow input of qu arters in addition
to bills.

• • • P2.1 o Write a program that helps a person decide wheth er to buy a hy brid car. Your

• • P2.11

• P2.12

prog ram 's input s should be:

• Th e cost of a new car

• The estima ted miles dri ven per year

• The estimat ed gas price

• The efficiency in miles per gallon

• Th e estimated resale value after 5 years

Co mput e th e total cost of own ing the car for
five years. (Fo r simpli city, we will no t tak e the
cost of financ in g into account.) Ob tain
realistic pric es for a new and used hyb rid
and a comp arable car from th e Web . Run your progra m twice, using today's ~as
pri ce and 15,000 miles per y ear. Include pseudocod e and th e pro gram runs with y our
assignment .

Write a program tha t asks th e user to input

• The numb er of gallons of gas in th e tank

• The fuel efficiency in miles per gallon

• The price of gas per gallon

Then print th e cost per 100 miles and how far th e car can go with the gas in the tank .

File names and extensions. Write a progr am that promp ts the user for the drive letter
(c), the path (\Win dows\System), the file name (Readme), and the extension (txt) . Th en
print the complete file name C: \Wi ndows\System\ Readme. txt. (If yo u u_se UN_IX or a
Macintosh, skip the drive n ame and use/ instead of\ to separat e directon es.)

I I

82 Chapter 2 Programming with Numbers and Str ing s

• • • P2.13 Write a pro gram that reads a number between 10,000 and 999,999 from the user,
where the user enters a comma in the input. Then print the numbe r without a
comma. Here is a sample dialog; the user input is in color:

Please enter an integer between 10,000 and 99,999: 23,456
23456

H int: Read the input as a string . Turn the strings consisting of the first two charac­
ters and the last three characters into numbers, and combine them .

• • P2.14 Write a program that reads a number between 1,000 and 999,999 from the user and
prints it with a comma separating the thou sands.

Here is a sample dialog; the user input is in color :

Please enter an integer between 1000 and 999999: 23456
23,456

• P2.15 Printing a grid. Write a program that prints the following grid to play tic-tac-toe.

+--+--+-- +

+--+-- +--+

+--+--+--+

+-- +--+--+

Of course, you could simply write seven sta tements of the form

print ("+--+--+--+")

You should do it the smart way, though. Decla re str ing variables to hold two kinds
of patterns: a com b-shaped pattern and the bottom line. Print the comb three times
and the bottom line once .

• • P2.16 Write a pro gram that reads a five-dig it positive inte ger and breaks it into a sequence
of individual digits. For example, the input 16384 is displayed as

1 6 3 8 4

• • P2.17 Write a program that reads two times in military format (0900, 1730) and prints the
number of hours and minutes between the two times. H ere is a samp le run. User
input is in color.

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if yo u can deal with the case whe re the first time is later than th e second:

Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

• • • P2.18 Writing large letters. A large letter H can be produced like this:

-:, *

p

Programming Exercises 83

It can be declared as a string literal like this:

LETIER_H = "* ''\n* ''\n****''\n'' ''\ n* *\n"

(The \n escape sequen ce denotes a "newline" character that causes subsequent
ch~racters to be printed on a new lin e.) Do the same for the letters E, L, and o. The n
wnte the message

H
E
L
L
0

in large letters.

• • P2.19 Write a program that transforms numbers 1, 2, 3, ... , 12
into the corresponding month names January, February,
March, .. . , December. Hint: Make a very long str ing "January
February March ... ", in whic h you add spaces such th at each
month name has the same length. Then concate nate the
characters of the month that you want. If you are both­
ered by the trailing spaces, use the strip method to remove
them.

• • P2.20 Write a program that prints a Christmas tree:

/\

•• P2.21

I \
I \

I \

Remember to use escape seque nces.

Easter Sunda y is the fir~t Sund~y aft~r the first full moon of spring . To compute
the date, you can u se this algonthm, mvented by th e math ematician Ca rl Friedrich
Gauss in 1800:

1. Let y be the year (such as 1800 or 2001).

2. Divide y by 19 and call the remainder a. Ignore the quotient.

3. Divide y by 100 to get a quotient band a remainder c.

4 . Divide b by 4 to get a quotient d and a remainder e.

5. Divide 8 '' b + 13 by 25 to get a quotient g. Ignore the remainder.

6. Divide 19 * a + b - d - g + 15 by 30 to get a remainder h. Ignor e the quotient.

7. Divid e c by 4 to get a quotient j and a remainder k.

8. Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder .

9. J?ivide 2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore the quo­
tient.

10. Divide h - m + r + 90 by 2 5 to get a quotient n. Ignore the remainder.

11. Divid e h - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

'" .Q
©

84 Chapter 2 Programming with Numbers and Strings

Then Easter falls on day p of m onth n. For example, if y is 2001:

a = 6 h = 18 n = 4
b = 20 , C = 1 j = 0 , k = 1 p = 15
d = 5,e=0 m = O
g=6 r =6

Therefore, in 2001, Easter Sund ay fell on April 15. Write a pro gram th at prompts th e
u ser for a year and print s out th e month and day of Easter Sund ay.

• • P2.22 Write a program that initiali zes a strin g variable and print s th e first thr ee characters ,
follow ed by three periods , and th en th e last thr ee chara cters. For example , if the
strin g is initiali zed to "Mi ssi ssi ppi ", then print Mi s ... ppi.

• • Graphics P2.23 Writ e a graphics pro gram that draws y our name in red, cont ained inside a blue
rectangle.

• • Graphics P2.24 Write a graphi cs pro gram that draws two solid squ ares: one in pink and one in
purple. Use a standard color for one of them and a custom color fo r th e other .

• • Graphics P2.2 5 Write a program to plot the followin g face.

• • Graphics P2,26 Draw a "bull' s eye" - a set of concentri c rin gs in alternatin g black and white color s.

@)
•• Graphics P2.27 Writ e a pro gram th at dr aws a pi ctur e of a hou se. It could be as simpl e as th e accom­

p anying figur e, or if y ou like, make it m ore elaborate (3-D , skyscrap er, marble col­
umn s in the ent ryw ay, what ever). Use at least three different colors.

• • Graphics P2.28 Dr aw th e coo rdin ate system figur e sh own in Section 2.6.2.

•• Graphics P2.29 Modif y th e i ta li anfl ag.p y pro gram in Ho w To 2.2 to dr aw a flag with th ree h ori zo n­
tal colored strip es, such as the Germ an flag.

••Graphics P2.30 Write a pro gram th at displays the Olympi c rin gs. Co lor the rin gs in th e O lympic
color s.

Programming Exercise s 85

• • Graphics P2.31 M ak e a bar chart to plot the followin g data set. Label each bar.

• • Business P2.32

• • Business P2.33

Bridge Name

Go lden Gate

Broo klyn

Longes t Span (ft)

4,200

1,595

Delaware Memo rial 2,150

Mackinac 3,800

Th e follow ing pseudo code describ es how a book store computes the pri ce of an
order from the total price and the numb er of th e books th at were ord ered.

Read the total book price and the number of books.
Compute the tax (7.S percent of the total book price).
Compute the shipping charge ($2 per book).
The price of the order is the sum of the total book price, the tax, and the shipping charge.
Print the price of the order.

Translate thi s pseud ocode into a Py thon pro gram.

Th e foll owing pseudo code describ es how to turn a strin g containin g a ten-digit
ph one numb er (such as "4155551212") into a mor e readable strin g with parenth eses
and dashes, like this: "(4 15) 555- 1212".

Take the string consisting of the first three characters and surround it with"(" and "J ". This is the
area code.

Concatenate the area code, the string consisting of the next three characters, a hyphen, and the string
consisting of the last four characters. This is the formatted number.

Translate thi s pseud ocode into a Py thon pro gram th at reads a telephon e numb er into
a string variable, comput es the form att ed numb er, and print s it .

• • Business P2.34 The followin g p seud oco de describe s ho w to extr act the d ollars and cents from a
price given as a floating-p oin t value. For example, a p rice of 2.95 yields values 2 and
95 for th e dollars and cent s.

Convert the price to an integer and store it in a variable dollars.
Multiply the difference price - dollars by 100 and add O.S.
Convert the result to an integer variable and store it in a variable cents.

Tran slate thi s pseud ocod e int o a Pyt hon pro gram. Read a pri ce and print the doll ars
and cents. Test yo ur p rog ram with input s 2. 95 and 4.35.

• • Business P2.35 Giving change. Implem ent a pro gram that directs a cashier
how to give change. Th e prog ram has tw o input s: the
amount du e and th e amount received from th e custom er.
D ispl ay the do llars, qu art ers, dim es, nickels, and pennie s
th at th e customer should receive in return . In ord er to avoid
roundoff error s, th e pro gram u ser should suppl y bo th
amount s in pennies, for exampl e 274 instead of 2.74.

86

I'

Chapter 2 Programming with Numbers and Strings

• Business P2.36

• Business P2.37

An online bank wants yo u to create a program that shows prospe ctive customers
how their depo sits will grow. Your program shou ld read .the initial balance and th e
annual interest rate. Interest is compounded monthl y. Pnnt out the balances after the
first three months. Here is a sample run:

Initial balan ce: 1000
Annual interes t rate in percent: 6.0
After first month: 1005.00
After second month: 1010.03
After third month: 1015.08

A video club wants to reward its best members with a discount based on the mem­
ber' s number of movie renta ls and the number of new member s referred by the
member. Th e discount is in p ercent and is equal to the sum of the rentals and the
referrals, but it cannot exceed 75 percent. Write a program to calculate the value of
the discount.

H ere is a samp le run:

Enter the number of movie rentals: 56
Enter the number of members referred to the video club: 3
The discount is equal to: 59.00 percent.

• Science P2.38 Consider th e following circuit.

Write a pro gram th at reads the resistance s of the thr ee resistors and computes the
total resistance, using Ohm's law.

•• Science P2.39 The dew point temperature Td can be calculated (approximately) from the relative
humidit y RH and the actual temperature T by

b · f(T,RH)
Td = a - f (T,RH)

f(T,RH) = ~ + h1(RH)
b+T

where a= 17.27 and b = 237.7° C.
Write a program that reads the rel ative humidity (between O and 1) and t?e tempera ­
ture (in degrees C) and prints the dew point value. Use the Python funct10n log to
compute the n atur al logarithm.

• • • Science P2.40 Th e pipe clip tem perature sensors shown here are robust sens<:>rs ~ha~ can be .clipped
direc tly onto copp er pipes to measure the temperature of the liquid s m the pip es.

• • • Science P2.41

Programming Exercises

Each sensor contain s a device called a thermistor . Th ermis tors are semiconductor
devices that exhibit a temperature-dependent resistance described by:

R ~ R
0
/[f-;.]

87

where R is the resistance (in Q) at the temperatur e T (in °K), and R 0 is the resistance
(in Q) at the temp eratur e T0 (in °K). f3 is a constant that depends on the material used
to make the thermistor. Thermistors are specified by providing values for R0, T0,

and /3.
Th e thermistors used to make the pipe clip temperature sensors have R 0 = 1075 Q at
T0 = 85 °C, and /3 = 3969 °K. (Notice that f3 has units of °K. Recall that the tempera­
ture in °K is obtained by addi ng 273.15 to the temperature in °C.) The liquid tem­
perature, in °C, is determined from the resistance R, in 0, using

T = f3To - 273

r0m(:J fi

Write a Pyt hon program that prompts the user for the thermistor resistance R and
prints a message giving the liquid tempe ratu re in °C.

Th e circuit shown below illustrate s some impor­
tant aspec ts of the connection between a power
compan y and on e of its customers . Th e custome r is
represented by three parameters, Vt, P, and pf. Vt is
the vo ltage accessed by plugging into a wall outlet.
Customers depend on having a dependable value
of Vt in order for their appliances to wor k prop ­
erly. Accordingly, th e power company regulates
the valu e of Vt carefu lly. P describe s the amount of
power used by the customer and is the primary factor in determining the custo mer's
electric bill. The power factor, pf, is less familiar. (The power factor is calculated as
the cosine of an angle so that its value will always be between zero and one.) In this
problem you will be asked to wr ite a Python program to investiga te the significance
of the powe r factor.

Power
Company

R= IOQ

R= IOQ

Power
Lines

+
Vt= 120 Vrms

P = 260 \YI

pf = 0.6

Customer

,.

I

88 Chapter 2 Programming with Number s and Strings

In the figure, the power lines are represented, somewhat simp listically, as resist~nces
in Ohms. Th e power comp any is represented a~ an AC vo ltage source. The source
voltage, Vs, required to provide the customer wi th power Pat vo ltage Vt can be
determin ed using the formula

V = s

(Vs has units of Vrms.) This formula indic ates that the value of Vs dep ends on the
value of pf Write a Python program that promp~s the user for a p~wer factor value
and then prints a mess age giving the correspo ndm g value of Vs, usm g the valu es for
P, R, and Vt shown in the figure above.

• •• Science P2.42 Consider the following tuning circuit connected to an antenna, w here C is a var iable
capacitor whose capacitance ranges from Cmin to Cmax·

• Science P2.43

The tunin g circuit selects the frequenc y f = ~. To design this circuit for a given
\Ji:C

frequency take C = ~C . C and calcu late the required inductance L from f and
, mm max 2n

C. Now the circuit can be tuned to any frequency in the range fmin = ~
2n LCmax

fmax = ~LC ..
mm

to

Write a Python program to design a tuning circuit for a given frequency, using a
variabl e capac itor w ith given values for Cmin and Cmax· (A typ ical input is f = 16.7

MHz, Cmin = 14 pF, and Cmax = 365 pF.) The program sho uld read inf(inH z), Cmin
and Cmax (in F), and print the required inductance value and the ran ge of frequencies

to wh ich the circ uit can be tuned by varying the capac itance.

Accord ing to the Cou lomb force law, the electric for~e betwee n two char ge?
particles of charge Q 1 and Q2 Cou lo mb s, that are a dist ance r meters apart, 1s

p = Q1 Qz Newtons, w her e E = 8.854 x 10- 12 Farads/meter. Write a program
4nEr 2

that calcul ates and displays the force on a pair of ch arged particles, based on the user

input of Q1 Co u lombs, Q2 Coulombs, and r meters.

ANSWERS TO SELF-CHECK QUESTIONS

1. One pos sible answer is

bottlesPerC ase = 8

You may choo se a different variable name or a
different initialization value, but your var iable
shou ld have type int.

2. There are two errors:

• You canno t have spac es in variable names.

• There are about 33.81 ounces per liter , not
28 .35.

3. uni tPri ce = 1. 95
quantity= 2

4. print("Tota l price:", uni tPri ce * quantity)

5. Change the declaration of cans PerPack to

cansPerPack = 4

6. Its value is modified by t~e assignment
statement .

7. Assignment wou ld occur when one car is
replaced by another in the parking space.

8. interest= balance* percent/ 100

9. sidelength = sqr t (area)

1 O. 4 / 3 '' pi * radius ** 3

1 1. 172 and 9

12. It is the seco nd -to -last digit of n. For examp le,
if n is 1729, then n / / 10 is 172, and (n // 10) % 10

is 2.

13. pairs = (t otal Wi dth - til eWi dth) // (2 *
tileWid th)

tiles= 1 + 2 * pairs
gap= (totalWidth -

tiles * tileWidt h) / 2.0

14. Now there are gro up s of four tiles (gray/
white/gray/b lack) fo llow in g the initi al black
til e. Therefore, the algorithm is no w

number of groups = integer part of (total width - tile width)
/ (4 x tile width)

number of tiles = 1 + 4 x number of groups
The formu la for the gap is not changed .

1 5. Clearly, the answer depends only on wh ether
the row and co lumn numb ers are even or odd,
so let's first take the remainder after divid -
ing by 2. T hen we can enumerat e all expec ted
answers:

Answers to Self-Check Questions 89

Row%2 Column% 2 Color
0 0 0
0 1

0 1
0

In the first three entries of the table, the color
is simply th e sum of the remaind ers. In the
fourth entry, the sum would be 2, but we want
a zero. We can achieve that by taking another
remainder operation:

color= Urow % 2) + (column% 2)) % 2
16 . In nine years, the repair costs increased by

$1,400. Th erefo re, the increa se per year is
$1,400 I 9 ""$156. Th e repair cost in year 3
wo uld be $100 + 2 x $156 = $412. The repair
cost in yearn is $100 + n x $156. To avoid
accumulation of roundoff errors, it is actually
a good idea to use the original expression that
yielded $156, that is,

Repair cost in yearn = 100 + n x 1400 / 9
1 7 . The pseudocode follows easily from the

equations:

bottom volume = n x r1
2 x h1

top volume = n x r/ x h2
middle volume = n x (ri2 + r1 x r2 + r/ J x h3 / 3
total volume = bottom volume + top volume + middle volume

Measuring a typ ical wine bottle yields
r 1 = 3.6, r2 = 1.2, h1 = 15, h2 = 7, h3 = 6
(all in centimeter s) . Therefore,

bottom volume= 610.73

top volume = 31.67

middle vo lume = 135.72

total volum e= 778.12

The actual vo lume is 750 ml, whi ch is close
enou gh to our computat ion to give confid ence
that it is corr ect.

1 8. The length is 14. The space counts as a
character .

19 . title.replace("Python Pro","")

20 . title = title+ "mi ng"

2 1. Hy

2 2. age = int (i nput("How old are you? "))

I
ii

. I

I

90 Chapter 2 Programmi ng w it h Numbe rs and Strings

2 3. The second sta teme nt calls int , n ot fl oat. If
the user were to ente r a price such as 1. 95, the
program wou ld be termin ated wit h a "value
error".

24. Th ere is no colon and space at th e end of the
prompt. A dialog would look like this:

Please enter the number of cans6

25. The total volume is 10

Th ere are four sp aces between is an d 10. On e
space originates from the format str ing (the
space b etween s and %) and three spa ces are
adde d before 10 to achi eve th e field w idth of 5.

26. Here is a simple so luti on:

pri nt("Bottles : %8d" % bottles)
print("Cans: %8d" % cans)

No te the spaces afte r Cans :. Alternatively, you
can use fo rm at spec ifiers for the strings.

print(" %-8s %8d" % ("Bottl es:", bottles))
print(" %-8s %8d" % ("Cans:", cans))

27. Her e is one possi bl e so luti on :

canvas.drawRect(O, 0, SO, SO)
canvas.d rawRect(O, 100, 50, SO)

28. The program shows three very elo ngated
ellip ses in stead of the rectang les .

29. canvas.draw0val(75, 75, SO, SO)

30. canvas.d rawline(O, 0 , 10, 30)
canvas.drawLine(lO, 30, 20, 0)

31. canvas . drawText(O, 30, "V")

32. win = Graphi csWi ndow(200, 200)
canvas= win.canvas()
canvas. setColor("red")
canvas .dr awRect (O, 0 , 200, 200)
canvas.setColor("yellow")
canvas.d rawRect(SO, 50, 100, 100)

-

