Chapter Two

PROGRAMMING WITH NUMBERS AND
STRINGS

ol an T = = T _,-..,.‘. ";' :",u‘;.--f "‘, ,'-:', : T v A .) . ; ;LR
L Py <S 2> 0% @k sR BrEs LA e G

o 08%.-T1 SA [SN N E e fan s R T

- f Introduction

- =7 g N X 7R SO T T T T A B R A A
ST TP R T
L k < 0 N2 2 NL xS exglioint A

* Numbers and character strings are important data types in any Python
program 5

* These are the fundamental building blocks we use to build more complex
data structures

* In this chapter, you will learn how to work with numbers and text.
We will write several simple programs that use them

& o
5 | NG a7 2P0
* ;f ;T AN \ U ﬁﬂ*@@) ” 1@7% S) ' X+_
&9 ; V3 o) ﬁ"‘?’ ey | Bkn >
y /: :’8 S -7 ‘°6\x JZO 7(1 =20 &

Chapter Goals

 To declare and initialize variables and constants

* To understand the properties and limitations of integers and floating-
point numbers

* To appreciate the importance of comments and good code layout
* To write arithmetic expressions and assignment statements

* To create programs that read, and process inputs, and display the
results

* To learn how to use Python strings

* To create simple graphics programs using basic shapes and text

Contents

2.1 Variables
2.2 Arithmetic

2.3 Problem Solving: First Do It By Hand
2.4 Strings

2.5 Input and Output
2.6 Graphics: Simple Drawings

2.1 Variables

Variables

A variable is a named storage location in a computer program

There are many different types of variables, each type used to store
different things

You ‘define’ a variable by telling the compiler:
* What name you will use to refer to it
e The initial value of the variable

You use an assignment statement to place a value into a variable

Variable Definition

* To define a variable, you must specify an initial value.

Nawes of previously

A variable is defined total = 0 . .
the first time it ; % defined variables

is assigned a valve. '
total bottles * BOTTLE_VOLUME

\ J
Y

The expression that replaces the previous valve

total total + cans * CAN_VOLUME

The same name '
can occur on both sides. Nawes of previously
See Figure 2. defined variables

The assignment statement

e Use the assighnment statement '=' to place a new value into a variable

cansPerPack = 6 # define & initializes the variable cansPerPack

“__u

 Beware: The “=“sign is NOT used for comparison:
* It copies the value on the right side into the variable on the left side

* You will learn about the comparison operator in the next chapter

Assignment syntax

* The value on the right of the '=' sign is assigned to the variable on the

left
Syntax variableName = value
A variable is defined total = 0 Nawes of previously
the first time it defined variables

is assigned a value. ;

total = bottles * BOTTLE_VOLUME

% P4
Y
The expression that replaces the previous value
total = total + cans * CAN_VOLUME
The same nawe
can occur on both sides. Nawes of previously
See Figure 2. defined variables

An example: soda deal

e Soft drinks are sold in cans and bottles. A store offers a six-pack of 12-
ounce cans for the same price as a two-liter bottle. Which should you
buy? (12 fluid ounces equal approximately 0.355 liters.)

List of variables: Type of Number
Number of cans per pack Whole number
Ounces per can

Ounces per bottle

Whole number
Number with fraction

9/5/16 10

Why different types?

There are three different types of data that we will use
in this chapter:

1. A whole number (no fractional part) 7 (integer or int)
2. A number with a fraction part 8.88 (float)
3. Asequence of characters "Bob” (string)

The data type is associated with the value, not the
variable:

cansPerPack = 6 # int
canVolume = 12.0 # float

9/5/16 11

Updating a Variable (assigning a
value)

 If an existing variable is assigned a new value, that value replaces the
previous contents of the variable.

* For example:

* cansPerPack =6 o 0

e cansPerPack =8 o

Because this 1s the first assignment, o The variable is initialized. 6 The second assignment overwrites
the variable is created. the stored value.
cansPerPack = cansPerPack = 6 cansPerPack = 8

9/5/16 12

Updating a Variable (computed)

e Executing the Assignment:
cansPerPack = cansPerPack + 2

* Step by Step:

e Step 1: Calculate the right hand side of the assignment. Find the value

of cansPerPack, and add 2 to it.
o Compute the vhlue of the right-hand side

cansPerPack = 8

cansPerPack + 2

10

* Step 2: Store the result in the variable named on the left side of the

assighment operator
0 Store the value in the variable

cansPerPack = 10

9/5/16 13

A Warning...

e Since the data type is associated with the value and not the variable:
e Avariable can be assigned different values at different places in a program

taxRate =5 # an int

Then later...

taxRate = 5.5 # a float
And then

taxRate = “Non- taxable” # a string

* If you use a variable and it has an unexpected type an error will occur
in your program

9/5/16 14

Our First Program of the Day...

 Open PyCharm (our IDE) and create a new file
* type in the following
e save the file as typetest.py
* Run the program

Testing different types in the same variable
taxRate = 5 # 1int

print(taxRate)

taxrate = 5.5 # float

print(taxRate)

taxRate = "Non-taxable" # string
print(taxRate)

print(taxRate + 5)

* So...
* Once you have initialized a variable with a value of a particular type you

should take great care to keep storing values of the same type in the
variable

9/5/16

15

A Minor Change

* Change line 8 to read:

print(taxRate + “?7”7)

* Save your changes
* Run the program

e What is the result?

 When you use the “+” operator with strings the second argument is

concatenated to the end of the first
* We'll cover string operations in more detail later in this chapter

9/5/16

16

Table 1: Number Literals in Python

Number

Table T Number Literals in Python

Type
int
int
int

float

float

float

float

Comment
An integer has no fractional part.
Integers can be negative.
Zero is an integer.
A number with a fractional part has type float.
An integer with a fractional part .0 has type float.

A number in exponential notation: 1 x 10° or 1000000.

Numbers in exponential notation always have type float.

= . —
Negative exponent: 2.96 x 107 =2.96 / 100 = 0.0296
Error: Do not use a comma as a decimal separator.

Error: Do not use fractions; use decimal notation: 3.5.

17

Naming variables

e Variable names should describe the purpose of the variable
« ‘canVolume’ is better than ‘cv’

* Use These Simple Rules

1. Variable names must start with a letter or the underscore ()
character

1. Continue with letters (upper or lower case), digits or the
underscore

2. You cannot use other symbols (? or %...) and spaces are not
permitted

3. Separate words with ‘camelCase’ notation
1. Use upper case letters to signify word boundaries

4. Don’ tuse ‘reserved’ Python words (see Appendix C, pages A6 and
A7)

9/5/16 18

Table 2: Variable Names in Python

Table 2 Variable Names in Python

Variable Name Comment
canVolumel Variable names consist of letters, numbers, and the underscore character.

X [n mathematics, you use short variable names such as x or y. This is legal in Python, but
not very common, because it can make programs harder to understand (see Programming
Tip 2.1 on page 36).

N\ CanVolume Caution: Variable names are case sensitive. This variable name is different from canvolume,
and it violates the convention that variable names should start with a lowercase letter.

® 6pack Error: Variable names cannot start with a number.
® can volume Error: Variable names cannot contain spaces.
® class Error: You cannot use a reserved word as a variable name.

® Ttr/f1.0z Error: You cannot use symbols such as / or.

9/5/16 19

PFOQ ramming TIp: Use Descriptive Variable
Names

e Choose descriptive variable names
* Which variable name is more self descriptive?
canvolume = 0.35

cv = 0.355

* This is particularly important when programs are written by more than
one person.

9/5/16 20

constants

* In Pythpn a constant is a variable whose value should not be changed
after it s assigned an initial value.

* |tis agood practice to use all caps when naming constants
BOTTLE_VOLUME = 2.0

* Itis good style to use named constants to explain numerical values to
be used in calculations

e Which is clearer?
totalvolume = bottles * 2
totalvolume = bottles * BOTTLE_VOLUME

* A programmer reading the first statement may not understand the
significance of the “2”

* Python will let you change the value of a constant
* Just because you can do it, doesn’t mean you should do it

9/5/16 21

Constants: Naming & Style

* Itis customary to use all UPPER_CASE letters for constants to
distinguish them from variables.

* |tis a nice visual way cue
BOTTLE_VOLUME = 2 # Constant

MAX_SIZE = 100 # Constant
taxRate = 5 # variable

9/5/16

22

Python comments

* Use comments at the beginning of each program, and to clarify details
of the code

 Comments are a courtesy to others and a way to document your
thinking
« Comments to add explanations for humans who read your code.

* The compiler ignores comments.

9/5/16 23

Commenting Code: 15t Style

##
This program computes the volume (in Titers) of a six-pack of soda

cans and the total volume of a six-pack and a two-1liter bottle
#

Liters in a 1l2-ounce can
CAN_VOLUME = 0.355

Liters in a two-1liter bottle.
BOTTLE_VOLUME = 2

Number of cans per pack.
cansPerpPack = 6

Calculate total volume in the cans.
totalvolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains', totalvolume, "liters.")

Calculate total volume in the cans and a 2-1liter bottle.
totalvolume = totalvolume + BOTTLE_VOLUME

print("A six-pack and a two-1iter bottle contain", totalvolume,
"Titers.")

9/5/16 24

Commenting Code: 2"d Style

HH

This program computes the volume (in liters) of a six-pack of soda
cans and the total volume of a six-pack and a two-liter bottle

#

CONSTANTS

CAN_VOLUME = ©0.355 # Liters in a 12-ounce can

BOTTLE _VOLUME = 2 # Liters in a two-liter bottle

Number of cans per pack.
cansPerPack = 6

Calculate total volume in the cans.
totalvVolume = cansPerPack * CAN_VOLUME
print("A six-pack of 12-ounce cans contains", totalVolume, "liters.")

Calculate total volume in the cans and a 2-liter bottle.
totalVolume = totalVolume + BOTTLE_VOLUME

print("A six-pack and a two-liter bottle contain", totalVolume,
"liters.")

9/5/16

Undefined Variables

* You must define a variable before you use it: (i.e. it must be defined
somewhere above the line of code where you first use the variable)

canvolume = 12 * TiterPeroOunce
TiterPerounce = 0.0296

* The correct order for the statements is:

literPerOunce = 0.0296
canVolume = 12 * literPerOunce

9/5/16

26

2.2 Arithmetic

Basic Arithmetic Operations

e Python supports all of the basic arithmetic operations:
e Addition “y
e Subtraction
e Multiplication “*”
* Division “f"

* You write your expressions a bit differently

a+b (a+b) /2
2

9/5/16

28

Precedence

Precedence is similar to Algebra:
* PEMDAS
* Parenthesis, Exponent, Multiply/Divide, Add/Subtract R

LI e

L L R
L R

.- » - "

LR .8 8" s H

» .- " R AR BN
»
.

-
LN
A
.- an
» .
LR

»

»
. s

» »
-8 »
.

. h
L R R
L R N
L N N N
L R
LR R N

LR

OO
R NN

Mixing numeric types

* If you mix integer and floating-point values in an arithmetic expression,
the result is a floating-point value.

. 7+4.0 #Yields the floating value 11.0

« Remember from our earlier example:
 If you mix stings with integer or floating point values the result is an error

9/5/16 30

Powers

 Double stars ** are used to calculate an exponent

* Analyzing the expression: b* (1L +r / 100) ** n
H_/
n Y
r "
bx|1+— 100
100 . v 4
i
* Becomes: 100
* b*((1+r/100) ** n) » L 4 o ’
| r
| + —
(100)

9/5/16 31

Floor division

* When you divide two integers with the / operator, you get a floating-
point value. For example,

7/4
* Yields 1.75

* We can also perform floor division using the // operator.
* The “//” operator computes the quotient and discards the fractional part

7//4

e Evaluates to 1 because 7 divided by 4 is 1.75 with a fractional part of
0.75, which is discarded.

9/5/16

32

Calculating a remainder

* If you are interested in the remainder of dividing two integers, use the
“%"” operator (called modulus):

remainder=7 % 4
* The value of remainder will be 3

e Sometimes called modulo divide

9/5/16 33

A Simple Example:

 Open a new file in the PyCharm IDE:
* Type in the following:

Convert pennies to dollars and cents

pennies = 1729

dollars = pennies // 100 # Calculates the number of dollars
cents = pennies % 100 # Calculates the number of pennies
print("I have", dollars, "and", cents, "cents")

e Save the file
* Run the file

e What is the result?

9/5/16

34

Integer Division and Remainder
Examples

Expression

(wheren=1729) el
n % 10 9
n// 10 172
n % 100 29
n% 2 1
-n // 10 -173

9/5/16

Table 3 Floor Division and Remainder

Comment

For any positive integer n,n % 10 is the last digit of n.

This is n without the last digit.

The last two digits of n.

n% 21s 0if nis even, 1 if nis odd (provided n is not negative)

—173 is the largcst integer <—172.9. We will not use floor division for
negative numbers in this book.

35

