Common Error (Floating Point, 2)

* For example, the following code multiplies the square root of 2 by
itself.

* |deally, we expect to get the answer 2:

r = math.sqrt(2.0)
if r *r == 2.0 :
print("sqrt(2.0) squared is 2.0")
else :
print("sqrt(2.0) squared is not 2.0 but", r * r)

Output:
sgrt(2.0) squared is not 2.0 but 2.0000000000000004

9/14/16 26

The Use of EPSILON

e Use a very small value to compare the difference to determine if
floating-point values are ‘close enough’

* The magnitude of their difference should be less than some
threshold

 Mathematically, we would write that x and y are close enough if:

x—y|<e

EPSILON = 1E-14
r = math.sqrt(2.0)
if abs(r * r - 2.0) < EPSILON :
print("sqrt(2.0) squared is approximately 2.0")

9/14/16

Lexicographical Order

* To compare Strings in ‘dictionary’ like order:
stringl < string?2

* Notes
e All UPPERCASE letters come before lowercase

* ‘space’ comes before all other printable characters
* Digits (0-9) come before all letters
e See Appendix A for the Basic Latin (ASCII) Subset of Unicode

9/14/16

28

Operator Precedence

 The comparison operators have lower precedence than arithmetic
operators

* Calculations are done before the comparison

* Normally your calculations are on the ‘right side’ of the comparison
or assignment operator

Calculations

actualFloor = floor + 1

if floor > height + 1

9/14/16 29

Precedence

Precedence is similar to Algebra:

* PEMDAS C
Parenthesis, Exponent, Multiply/Divide, Add/Subtract, Comparisons

A Third Example

The university bookstore has a Kilobyte Day sale every October 24
(10.24), giving an 8 percent discount on all computer accessory

purchases if the price is less than $128, and a 16 percent discount if
the price is at least $128.

9/14/16

31

Implementing an if Statement (1)

1) Decide on a branching condition

original price < 1287

2) Write pseudocode for the true branch

discounted price = 0.9Z x original price

3) Write pseudocode for the false branch

discounted price = 0.84 x original price

9/14/16

32

Implementing an if Statement (2)

4) Double-check relational operators
Test values below, at, and above the comparison (127, 128, 129)

5) Remove duplication
discounted price = x original price
6) Test both branches

discounted price = 0.92 x 100 = 92

discounted price = 0.84 x 200 = 168

9/14/16 33

Implementing an if Statement (3)

7. Write the code in Python

9/14/16

34

A Third Example

* The university bookstore has a Kilobyte Day sale every October 24
(10.24), giving an 8 percent discount on all computer accessory

purchases if the price is less than $128, and a 16 percent discount if
the price is at least $128.

if originalPrice < 128
discountRate = 0.92

else :
discountRate = 0.84
discountedPrice = discountRate * originalPrice

9/14/16

The Sale Example

e Open the file:
e sale.py

* Run the program several time using different values
e Use values less than 128

e Use values greater that 128
* Enter 128

 What results do you get?

9/14/16

36

Nested Branches

* You can nest an if inside either branch of an if statement.

* Simple example: Ordering drinks
* Ask the customer for their drink order
e if customer orders wine
e Ask customer for ID
e if customer’ sageis 21 or over
* Serve wine
* Else
* Politely explain the law to the customer
* Else

e Serve customers a non-alcoholic drink

9/14/16

37

Flowchart of a Nested if

Ask for order Nested if-else inside true branch of
\l: an if statement.
 Three paths
True g
Wine? Check ID
False True
>=217 —> Serve wine
Serve non-
. False
alcoholic
drink Read law
€
Done

9/14/16 38

Tax Example: nested ifs

* Four outcomes (branches)

* Single
e <=32000
e >32000

e Married

* <=64000
* >64000

9/14/16

Table 3 Federal Tax Rate Schedule

If your status is Single and

if the taxable income is the tax is of the amount over
at most $32,000 10% $0
over $32,000 $3,200 + 25% $32,000
If your status is Married and
if the taxable income is the tax is of the amount over
at most $64,000 10% $0
over $64,000 $6,400 + 25% $64,000

39

Flowchart for the Tax Example

True

Single?

False

* Four branches

9/14/16

income True
<32,000

False

income True
<64,000

False

10%
bracket

25%
bracket

10%
bracket

25%
bracket

40

Taxes.py (1)

1 ##

2 # This program computes income taxes, using a simplified tax schedule.
3 #

4

5 # Initialize constant variables for the tax rates and rate limits.
6 RATEl =

7 RATE2 =

8 RATE1_SINGLE_LIMIT =

9 RATE1_MARRIED_LIMIT =

10

11 # Read income and marital status.

12 income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")
14

15 # Compute taxes due.

16 taxl =

17 tax2 =

18

19 if maritalStatus == "s" :
20 if income <= RATE1_SINGLE_LIMIT :
21 taxl = RATEL * income
22 else :
23 taxl = RATE1 * RATE1_SINGLE_LIMIT
24 tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT)
25 else :
26 if income <= RATE1_MARRIED_LIMIT :
27 taxl = RATE1 * income
28 else :
29 taxl = RATE1l * RATE1_MARRIED_LIMIT
30 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)
31
32 +totalTax = taxl + tax2
33

9/14/16

Taxes.py (2)

* The ‘True’ branch (Single)
 Two branches within this branch

19
20
21
22
23
24

9/14/16

1f maritalStatus == "s" :
1T 1ncome <= RATE1_ SINGLE LIMIT :
taxl = RATE1 * 1income
else :
taxl = RATEl * RATEL1_SINGLE_LIMIT

tax2 = RATE2 * (income - RATE1_SINGLE_LIMIT)

42

Taxes.py (3)

* The ‘False’ branch (Married)

else :
1Tt 1ncome <= RATE1_MARRIED_LIMIT :
taxl = RATE1l * 1income
else :
taxl = RATE1l * RATE1_MARRIED_LIMIT
tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)

9/14/16 43

Running the Tax Example

e Open the file:
* taxes.py

* Run the program several time using different values for income and
marital status

e Use income values less than $32,000
* Use income values greater than $64,000
 Enter “&” as the marital status

* What results do you get?

9/14/16

44

Hand-tracing

Hand-tracing helps you understand whether a program works correctly

Create a table of key variables
e Use pencil and paper to track their values

Works with pseudocode or code
 Track location with a marker

Use example input values that:
* You know what the correct outcome should be

* Will test each branch of your code

9/14/16 45

Hand-tracing the Tax Example

tax1 taxZ

income

wmarital
status

0

0

OLoONOD

RATEL =
RATEZ2 =

RATEL_SINGLE_LIMIT =
RATE1_MARRIED_LIMIT =

15 # Compute taxes due.

16
17

9/14/16

taxl =
tax2 =

* Setup
* Table of variables

* |nitial values

46

Hand-tracing the Tax Example (2)

wmarital
tax1 taxZ = income status * |Input variables
0 0 20000 m * From user

* Update table

11 # Read income and marital status.
12 1income = float(input("Please enter your income: "))

13 maritalStatus = input("Please enter s for single, m for married:

* Because marital status is not

19 1if maritalStatus

25 else

9/14/16

a_7n
S

we skip to the else on line 25

1"]

—— ~

")

Hand-tracing the Tax Example (3)

 Because income is not <= 64000, we move to the else clause on line 28
e Update variables on lines 29 and 30

 Use constants

26 1T income <= RATE1l _MARRIED LIMIT :

27 taxl = RATE1l * income

28 else :

29 taxl = RATE1 * RATE1_MARRIED_LIMIT

30 tax2 = RATE2 * (income - RATE1_MARRIED_LIMIT)

wmarital
tax1 taxZ . income . status

) g A | 80000 m
6400 | 4000

9/14/16 48

Incremental Code and Test

Implement a solution to one input
* Testit

Add a solution to a second input
* Testit

Think a little more about whether there is a clever way to add more
solutions

Add solutions incrementally
e Test them

It’s okay if it breaks at first
e Go back and understand why it’s breaking

* Code doesn’t work for a specific reason —it’s not arbitrary

9/14/16

49

Multiple Alternatives

9/14/16 50

3.4 Multiple Alternatives

 What if you have more than two branches?

* Count the branches for the following earthquake effect example:
e 8 (or greater)

e 7t07.99 Table 4 Richter Scale|
* 6t06.99 Value Effect
* 451t05.99 8 Most structures fall

Less than 4.5

7 Many buildings destroyed
_ . 6 Many buildings considerably
When using multiple if statements, damaged, some collapse
test the ge_n.eral COI:](.thIOnS after the 4.5 Damage to poorly constructed
more specific conditions. buildings

9/14/16 51

Flowchart of Multiway Branching
|

True
>=8.0? — Most Structures Fall
False
True
>=7.0? — Many Buildings Destroyed
False
True di i
= 6.0? 3 Many buildings considerably damaged,
some collapse
False v
True
>= 4,57 —> Damage to poorly constructed buildings =
False v

No destruction of buildings

9

9/14/16

52

elif Statement

e Short for Else, if...

* As soon as one on the test conditions succeeds, the statement block is
executed

* No other tests are attempted

* |f none of the test conditions succeed the final else clause is executed

9/14/16 53

if, elif Multiway Branching

if richter >= 8.0 : # Handle the ‘special case’ first
print("Most structures fall")

elif richter >= 7.0 :
print("Many buildings destroyed")

elif richter >= 6.0 :
print("Many buildings damaged, some collapse")

elif richter >= 4.5 :
print("Damage to poorly constructed buildings")

else : # so that the f‘general case’ can be handled last
print("No destruction of buildings")

9/14/16 54

What is Wrong With This Code?

if richter >= 8.0 :
print("Most structures fall")
if richter >= 7.0 :
print("Many buildings destroyed")
if richter >= 6.0 :
print("Many buildings damaged, some collapse")
if richter >= 4.5 :
print("Damage to poorly constructed buildings")

9/14/16

55

earthquake Example

e Open the file:
e earthquake.py

* Run the program with several different inputs

9/14/16

56

Using Flowcharts to
Develop and Refine
Algorithms

3.5 Problem Solving: Flowcharts

 You have seen a few basic flowcharts

e A flowchart shows the structure of decisions and tasks to solve a
problem

e Basic flowchart elements:

True
Simple task Input/output Condition

False

e Connect them with arrows
Each branch of a decision

can contain tasks and
further decisions

* But never point an arrow inside
another branch!

9/14/16 58

Using Flowcharts

 Flowcharts are an excellent tool

* They can help you visualize the flow of your algorithm

e Building the flowchart

* Link your tasks and input / output boxes in the sequence they need
to be executed

 When you need to make a decision use the diamond (a conditional
statement) with two outcomes

* Never point an arrow inside another branch

9/14/16

59

Conditional Flowcharts

Two Outcomes

Condition

False

False branch

9/14/16

True

True branch

Multiple Outcomes

Choice 1

False

Chot

(=]
(¢]
(IS

False

Choice 3

False

“Other”
branch

True

True

True

“Choice 17
branch

“Choice 2”
branch

“Choice 37
branch

60

Shipping Cost flowchart

Shipping costs are S5 inside the contiguous the United States (Lower 48
states), and $10 to Hawaii and Alaska. International shipping costs are
also $10.

e Three Branches:

. True
Inside US?
False
Shipping Contigliols True Shiopi
CcCOst = SlOl United States C;;fk;‘;g
False

International Hawaii/Alaska Lower 48

Branch Branch Branch

9/14/16 61

Don’'t Connect Branches!

Shipping costs are S5 inside the United States, except that to Hawaii and
Alaska they are $10. International shipping costs are also $10.

e Don’t do this!

. True
Inside US?
False
P ——
Shipping
cost = $10 Continelntal us?
| False
International Hawaii/Alaska
Branch Branch

9/14/16

True Shipping
cost = $5

Lower 48
Branch

62

Shipping Cost Flowchart

Shipping costs are S5 inside the United States, except that to Hawaii and
Alaska they are $10. International shipping costs are also $10.

) True
Inside US?

False

Shipping True
cost = $10 Continental US?

False
Shipping Shipping
cost = $10 cost = $5

9/14/16 63

Shipping Example

* Shipping.py

* Run the program with several different inputs?
 What happens if you enter “usa” as the country?

* We will learn several ways to correct the code later in this
chapter

9/14/16

64

Complex Decision Making is Hard

9/14/16

Building Test Cases

Problem Solving: Test Cases

* Aim for complete coverage of all decision points:

* There are two possibilities for the marital status and two tax
brackets for each status, yielding four test cases

e Test a handful of boundary conditions, such as an income that is at
the boundary between two tax brackets, and a zero income

 If you are responsible for error checking (which is discussed in
Section 3.9), also test an invalid input, such as a negative income

e Each branch of your code should be covered with a test case

9/14/16

67

Choosing Test Cases

e Choose input values that:
e Test boundary cases and 0 values

e Test each branch

Test Case Expected Quiput Comwent

30,000 s 3,000 107 bracket
72,000 s 13,200 3,200+ 25% ot 40,000
50,000 wm 5,000 107 bracket
104,000 wm 16,400 6,400 + 25% of 40,000
32,000 s 3,200 boundary case

0s 0 boundary case

9/14/16 68

Make a Schedule...

* Make a reasonable estimate of the time it will take you to:
* Design the algorithm

* Develop test cases
* Translate the algorithm to code and enter the code

e Test and debug your program

e Leave some extra time for unanticipated problems

As you gain more experience your estimates will become more
accurate. It is better to have some extra time than to be late

9/14/16

69

Boolean Variables and
Operators

9/14/16 70

Boolean Variables

* Boolean Variables

* A Boolean variable is often called a flag because it can be either up
(true) or down (false)

* boolean is a Python data type
« failed = True
e Boolean variables can be either True or False
* There are two Boolean Operators: and, or
* They are used to combine multiple conditions

9/14/16

71

Combined Conditions: and

 Combining two conditions is often used in range checking
* |s avalue between two other values?

 Both sides of the and must be true for the result to be true

A B
True True
if temp > @ and temp < 100 :
print("Liquid") True False
False True

False False

9/14/16

A and B
True
False
False

False

72

Combined Conditions: or

 We use or if only one of two conditions need to be true
* Use a compound conditional with an or:

if temp <= 0 or temp >=

100
print("Not liquid") A B
* |f either condition is true True True
e Th Itist
e result is true frue Falce
False True

False False

9/14/16

AorB
True
True
True

False

73

The not operator. not

* If you need to invert a boolean variable or comparison, precede it with
not

if not attending or grade < 60 :
print("Drop?") A not A

if attending and not(grade < 60) : True False

print("Stay") False True

* If you are using not, try to use simpler logic:

if attending and grade >= 60 :
print("Stay")

9/14/16 74

The not operator: inequality !

* Aslightly different operator is used for the not when checking for
inequality rather than negation.

 Example inequality:

* The password that the user entered is not equal to the password on
file.

e if userPassword != filePassword :

9/14/16 75

and Flowchart

* This is often called ‘range checking’

* Used to validate that the input is
between two values

Both conditions
must be true

if temp > © and temp < 100
print("Liquid")

9/14/16

and

Temperature
> 0?

True

Temperature
< 100?

True

Water 1s
liquid

False

False

76

or flowchart

* Another form of ‘range checking’
* Checks if value is outside a range

or
False False
Tclmperaturc Temperature
<0? > 100?
if temp <= 0 or temp >= 100 True True
print("Not Liquid") e

one condition
must be true

Water 1s
not liquid

9/14/16 77

Comparison Example

e Open the file:
* Compare2.py

* Run the program with several inputs

9/14/16

78

Boolean Operator Examples

Table 5 Boolean Operator Examples

Expression Value
0 < 200 and 200 < 100 False
0 < 200 or 200 < 100 True
0 < 200 or 100 < 200 True

0 < x and x < 100 or x == -1 (0 < x and x < 100)

or X == -1
not (0 < 200) False
frozen == True frozen
frozen == False not frozen

9/14/16

Comment
Only the first condition is true.
The first condition is true.

The or is not a test for “either-or”. If both
conditions are true, the result is true.

The and operator has a higher precedence than the
or operator (see Appendix B).

0 < 200 is true, therefore its negation is false.

There is no need to compare a Boolean variable
with True.

Itis clearer to use not than to compare with False.

79

Common Errors with Boolean Conditions

Confusing and and or Conditions

 |tis a surprisingly common error to confuse and and or conditions.

* Avalue lies between 0 and 100 if it is at least O and at most 100.
It lies outside that range if it is less than O or greater than 100.

* There is no golden rule; you just have to think carefully.

9/14/16

80

Short-circuit Evaluation: and

e Combined conditions are evaluated from left to right
* If the left half of an and condition is false, why look further?

if temp > © and temp < 100

print("Liquid")
and

False

Temperature

> 07
Both conditions True Done!
must be true
False
Temperature)
< 100?
True

9/14/16

81

Short-circuit evaluation: or

* If the left half of the or is true, why look further?

if temp <= 0 or temp >= 100 :
print("Not Liquid")

or
False False
Temperature Temperature
<0? > 100?
True True
At least
Done! one condition

must be true

9/14/16

82

De Morgan's law

 De Morgan’s law tells you how to negate and and or conditions:
* not(A and B) isthesameas (not A) or (not B)

* not(AorB) isthesameas (notA)and (notB)

e Example: Shipping is higher to AK and HI

if (country != "USA" if not(country=="USA"
and state != "AK" or state=="AK"
and state != "HI") : or state=="HI") :
shippingCharge = 20.00 shippingCharge = 20.00

* To simplify conditions with negations of and or or expressions, it’s a
good idea to apply De Morgan’s law to move the negations to the

innermost level.

9/14/16

83

Analyzing Strings

Analyzing Strings — The in Operator

 Sometimes it’s necessary to analyze or ask certain questions about a
particular string.

 Sometimes it is necessary to determine if a string contains a given
substring. That is, one string contains an exact match of another
string.

* Given this code segment,
name = "John Wayne"
* the expression
"Way" in name

* yields True because the substring "Way" occurs within the string
stored in variable name.

* The not in operator is the inverse on the in operator

9/14/16

85

Substring: Suffixes

e Suppose you are given the name of a file and need to ensure that it
has the correct extension

if filename.endswith(".html") :
print("This is an HTML file.")

* The endswith() string method is applied to the string stored in
filename and returns True if the string ends with the substring
".html" and False otherwise.

9/14/16

86

Operations for Testing Substrings

Table 6 Operations for Testing Substrings

Operation
substring in s

s.count (substring)

s.endswith(substring)

s.find(substring)

s.startswith (Substr'ing)

9/14/16

Description
Returns True if the string s contains substring and False otherwise.

Returns the number of non-overlapping occurrences of substring in the
string s.

Returns True if the string s ends with the substring and False otherwise.

Returns the lowest index in the string s where substring begins, or —1 if
substring is not found.

Returns True if the string s begins with substring and False otherwise.

87

Methods: Testing String Characteristics (1)

Table 7 Methods for Testing String Characteristics

Method Description

s.isalnum() Returns True if string s consists of only letters or digits
and it contains at least one character. Otherwise it
returns False.

s.isalpha() Returns True if string s consists of only letters and
contains at least one character. Otherwise it returns
False.

s.isdigitQ) Returns True if string s consists of only digits and

contains at least one character. Otherwise, it returns
False.

9/14/16

88

Methods for Testing String Characteristics (2)

Table 7 Methods for Testing String Characteristics

s.1slower() Returns True if string s contains at least one letter and
all letters in the string are lowercase. Otherwise, it
returns False.

s.isspace) Returns True if string s consists of only white space
characters (blank, newline, tab) and it contains at least
one character. Otherwise, it returns False.

s.isupper) Returns True if string s contains at least one letter and
all letters in the string are uppercase. Otherwise, it
returns False.

9/14/16 89

Comparing and Analyzing Strings (1)

9/14/16

Table 8 Comparing and Analyzing Strings

Expression
"John" == "John"
"John" == "john"
Iljohnll < "JOhn"

"john" in "John Johnson™

name
"ho"

name

name

name

name.

name

name

= "John Johnson"
not in name

.count("oh™)

.find("oh™)

.find("ho™)

startswith("john™")

.isspace()

.isalnum()

"1729".isdigitQ

"-1729".1sdigitQ

Value
True

False

False

False

True

False

False
False
True

False

Comment
== is also used to test the equality of two strings.

For two strings to be equal, they must be identical. An

uppercase “J” does not equal a lowercase j

Based on lexicographical ordering of strings an uppercase

“]” comes before a lowercase “j” so the string "john"

follows the string "John". See Special Topic 3.2 on page 101.

The substring "john" must match exactly.

The string does not contain the substring "ho".
te] te]

All non-overlapping substrings are included in the count.

Finds the position or string index where the first
substring occurs.

The string does not contain the substring ho.

The string starts with "John" but an uppercase “J” does
“:'»

not match a lowercase “j
The string contains non-white space characters.
The string also contains blank spaces.

The string only contains characters that are digits.

A negative sign is not a digit.

90

Comparing and Analyzing Strings (2)

Table 8 Comparing and Analyzing Strings

name.startswith("john")

name.isspace()
name.isalnum()
"1729".isdigit()

"-1729".1sd1git()

9/14/16

False

False

False

True

False

The string starts with "John" but an uppercase “]” does

«K'»

not match a lowercase “j”.

The string contains non-white space characters.
The string also contains blank spaces.

The string only contains characters that are digits.

A negative sign is not a digit.

91

Substring Example

e Open the file:
e Substrings.ph

* Run the program and test several strings and substrings

9/14/16

92

Input Validation

9/14/16 93

Input Validation

e Accepting user input is dangerous
* Consider the Elevator program:

e Assume that the elevator panel has buttons labeled 1 through 20
(but not 13).

9/14/16

94

Input Validation

* The following are illegal inputs:
e The number 13

if floor == 13 :
print("Error: There is no thirteenth floor.")

e Zero or a negative number
A number larger than 20

if floor <= 0@ or floor > 20 :
print("Error: The floor must be between 1 and 20.")

* An input that is not a sequence of digits, such as five:

* Python’s exception mechanism is needed to help verify integer
and floating point values (Chapter 7).

9/14/16

95

Elevatorsim2.py

LONOOTUVTAWN =

(R P G G - ——
AUVNHhWN=O

##

This program simulates an elevator panel that skips the 13th floor,
checking for input errors.

#

(;)l)txlil] [I]O HO()I' 1][]]]]1)01- fl.(f\]]] th(‘ user as an inrcgcr.
floor = int(input("Floor: "))

Make sure the user input is valid.
if floor ==
print("Error: There is no thirteenth floor.")
elif floor <= 0 or floor >
print("Error: The floor must be between 1 and 20.")
else :
Now we know that the input is valid.
actualFloor = floor

9/14/16

96

Elevator Simulation

e Open the file:
e elevatorsim2.py

* Test the program with a range of inputs including:

e 12
e 14
e 13
e -1
0

e 23
* 19

9/14/16

97

Chapter Three Review

Summary: if Statement

The if statement allows a program to carry out different actions
depending on the nature of the data to be processed.

Relational operators (< <= > >= == !=)are used to compare
numbers and Strings.

Strings are compared in lexicographic order.

Multiple 1f statements can be combined to evaluate complex
decisions.

When using multiple if statements, test general conditions after more
specific conditions.

9/14/16 99

Summary: Flowcharts and Testing

When a decision statement is contained inside the branch of another
decision statement, the statements are nested.

Nested decisions are required for problems that have two levels of
decision making.

Flow charts are made up of elements for tasks, input/output, and
decisions.

Each branch of a decision can contain tasks and further decisions.
Never point an arrow inside another branch.
Each branch of your program should be covered by a test case.

It is a good idea to design test cases before implementing a program.

9/14/16 100

Summary: Boolean

* The type boolean has two values, true and false.

Python has two Boolean operators that combine conditions: and
and or.

To invert a condition, use the not operator.
When checking for equality use the ! operator.
The and and or operators are computed lazily:

e As soon as the truth value is determined, no further conditions are
evaluated.

De Morgan’s law tells you how to negate and and or conditions.

9/14/16 101

