
Chapter 4: Loops

Chapter Goals
•  To	implement	while	and	for	loops	

•  To	hand-trace	the	execu6on	of	a	program	

•  To	become	familiar	with	common	loop	algorithms	

•  To	understand	nested	loops	

•  To	implement	programs	that	read	and	process	data	sets	

•  To	use	a	computer	for	simula6ons	

In	this	chapter,	you	will	learn	about	loop	statements	in	Python,	as	well	
as	techniques	for	wri8ng	programs	that	simulate	ac8vi8es	in	the	real	

world.	

	

2 9/16/16

Contents
•  The	while	loop	
•  Problem	Solving:	Hand-Tracing	

•  Applica6on:	Processing	Sen6nels	
•  Problem	Solving:		Storyboards	

•  Common	Loop	Algorithms	

•  The	for	loop	
•  Nested	loops	

•  Processing	Strings	
•  Applica6on:		Random	Numbers	and	Simula6on	

•  Graphics:		Digital	Image	Processing	

•  Problem	Solving:		Solve	a	Simpler	Problem	First	

3 9/16/16

The while Loop

9/16/16 4

The while Loop
•  Examples	of	loop	applica6ons	

•  Calcula6ng	compound	interest	
•  Simula6ons,	event	driven	programs	
•  Drawing	6les…	

•  Compound	interest	algorithm	(Chapter	1)	

Steps	

5 9/16/16

Planning the while Loop
balance	=	10.0	

target	=	100.0	

year	=	0	

rate	=	0.025	

while	balance	<	TARGET	:	

			year	=	year	+	1	

			interest	=	balance	*	RATE/100	

			balance	=	balance	+	interest	

A	loop	executes	instruc8ons	repeatedly	
while	a	condi8on	is	True.	

6 9/16/16

Syntax: while Statement

7 9/16/16

Count-Controlled Loops
•  A	while	loop	that	is	controlled	by	a	counter	
counter	=	1																														#	Initialize	
the	counter	

while	counter	<=	10	:												#	Check	the	counter	
print(counter)	
counter	=	counter	+	1							#	Update	the	loop	
variable	

8 9/16/16

Event-Controlled Loops
•  A	while	loop	that	is	controlled	by	an	event	
balance	=	INITIAL_BALANCE		#	Initialize	the	loop	variable	

while	balance	<=	TARGET:			#	Check	the	loop	variable	
year	–	year	+	1	
balance	=	balance	*	2				#	Update	the	loop	variable	

9 9/16/16

Execution of the Loop

10 9/16/16

Execution of the Loop (2)

11 9/16/16

Doubleinv.py

Declare	and	ini6alize	a	variable	outside	of	
the	loop	to	count	year	

Increment	the	year	variable	each	6me	
through	

12 9/16/16

while Loop Examples

13 9/16/16

while Loop Examples (2)

14 9/16/16

Common Error: Incorrect Test
Condition

•  The	loop	body	will	only	execute	if	the	test	condi6on	is	True.	
•  If	bal	is	ini6alized	as	less	than	the	TARGET	and	should	grow	un6l	it	
reaches	TARGET	
•  Which	version	will	execute	the	loop	body?	

while	bal	<	TARGET	:	
			year	=	year	+	1	
			interest	=	bal	*	RATE	
			bal	=	bal	+	interest	
	
	

while	bal	>=	TARGET	:	
			year	=	year	+	1	
			interest	=	bal	*	RATE	
			bal	=	bal	+	interest	

15 9/16/16

Common Error: Infinite	Loops
•  The	loop	body	will	execute	un6l	the	test	condi6on	becomes	False.	

•  What	if	you	forget	to	update	the	test	variable?	
•  bal	is	the	test	variable	(TARGET	doesn’t	change)	
•  You	will	loop	forever!		(or	un6l	you	stop	the	program)	

while	bal	<	TARGET	:	
			year	=	year	+	1	
			interest	=	bal	*	RATE	
			bal	=	bal	+	interest	

16 9/16/16

Common Error: Off-by-One	Errors
•  A	‘counter’	variable	is	oaen	used	in	the	test	condi6on	
•  Your	counter	can	start	at	0	or	1,	but	programmers	oaen	start	a	counter	
at	0	

•  If	I	want	to	paint	all	5	fingers	on	one	hand,	when	I	am	done?	
•  If	you	start	at	0,	use	“<“ 	 				If	you	start	at	1,	use	“<=“	
•  0,	1,	2,	3,	4 	 	 	 	1,	2,	3,	4,	5	

finger	=	0	
FINGERS	=	5	
while	finger	<	FINGERS	:	
			#	paint	finger	
			finger	=	finger	+	1	
	

finger	=	1	
FINGERS	=	5	
while	finger	<=	FINGERS	:	
			#	paint	finger	
			finger	=	finger	+	1	

17 9/16/16

Hand Tracing Loops

9/16/16 18

Hand-Tracing Loops
•  Example:		Calculate	the	sum	of	digits	(1+7+2+9)	

•  Make	columns	for	key	variables	(n,	total,	digit)	
•  Examine	the	code	and	number	the	steps	
•  Set	variables	to	state	before	loop	begins	

19 9/16/16

Tracing Sum of Digits

•  Start	execu6ng	loop	body	statements	changing	variable	values	on	a	new	
line	

•  Cross	out	values	in	previous	line	

20 9/16/16

Tracing Sum of Digits

•  Con6nue	execu6ng	loop	statements	changing	variables	

•  1729	/	10	leaves	172	(no	remainder)	

21 9/16/16

Tracing Sum of Digits
•  Test	condi6on.		If	True,	execute	loop	again	

•  Variable	n	is	172,	Is	172	>	0?,	True!		

•  Make	a	new	line	for	the	second	6me	through	and	update	variables	

22 9/16/16

Tracing Sum of Digits
•  Third	6me	through	

•  Variable	n	is	17	which	is	s6ll	greater	than	0	

•  Execute	loop	statements	and	update	variables		

23 9/16/16

Tracing Sum of Digits
•  Fourth	loop	itera6on:	

•  Variable	n	is	1	at	start	of	loop.		1	>	0?		True			
•  Executes	loop	and	changes	variable	n	to	0	(1/10	=	0)	

24 9/16/16

Tracing Sum of Digits
•  Because	n	is	0,	the	expression(n	>	0)	is	False	
•  Loop	body	is	not	executed	

•  Jumps	to	next	statement	aaer	the	loop	body	

•  Finally	prints	the	sum!	

25 9/16/16

Summary of the while Loop
•  while	loops	are	very	common		

•  Ini6alize	variables	before	you	test	
•  The	condi6on	is	tested	BEFORE	the	loop	body	

•  This	is	called	pre-test	
•  The	condi6on	oaen	uses	a	counter	variable	

•  Something	inside	the	loop	should	change	one	of	the	variables	used	
in	the	test	

•  Watch	out	for	infinite	loops!		

26 9/16/16

Investment Example
•  Open	the	file:	

•  Doubleinv.py	

•  Run	the	program	with	several	test	cases	
•  The	program	will	prompt	you	for	a	rate	
•  Enter	a	mix	of	valid	and	invalid	rates	

27 9/16/16

Sentinel Values

9/16/16 28

Processing Sentinel Values
•  Sen6nel	values	are	oaen	used:	

•  When	you	don’t	know	how	many	items	are	in	a	list,	use	a	‘special’	
character	or	value	to	signal	the	“last”	item	

•  For	numeric	input	of	posi6ve	numbers,	it	is	common	to	use	the	value	-1	

A	sen8nel	value	denotes	the	end	of	a	data	set,	but	it	is	not	part	of	the	
data.	

salary	=	0.0	
while	salary	>=	0	:	
			salary	=	float(input())	
						if	salary	>=	0.0	:	
									total	=	total	+	salary	
									count	=	count	+	1	
	

29 9/16/16

Averaging a Set of Values
•  Declare	and	ini6alize	a	‘total’	variable	to	0	
•  Declare	and	ini6alize	a	‘count’	variable	to	0	

•  Declare	and	ini6alize	a	‘salary’	variable	to	0	
•  Prompt	user	with	instruc6ons	

•  Loop	un6l	sen6nel	value	is	entered	
•  Save	entered	value	to	input	variable	(‘salary’)	
•  If	salary	is	not	-1	or	less	(sen6nel	value)	

•  Add	salary	variable	to	total	variable	
•  Add	1	to	count	variable	

•  Make	sure	you	have	at	least	one	entry	before	you	divide!	
•  Divide	total	by	count	and	output.					
•  Done!	

30 9/16/16

Sentinel.py (1)

Outside the while loop: declare and
initialize variables to use	

Input new salary and compare to sentinel	

Update running total and
count (to calculate the
average later)	

Since salary is initialized to 0, the while loop
statements will execute at least once	

31 9/16/16

Sentinel.py (2)

Prevent divide by 0	

Calculate and
output the average
salary using the
total	and count
variables	

32 9/16/16

Sentinel Example
•  Open	the	file:	

•  Sen6nal.py	

•  	No6ce	the	use	of	the	IF()	test	inside	the	while	loop	
•  The	IF()	checks	to	make	sure	we	are	not	processing	the	sen6nel	
value	

	

33 9/16/16

Priming Read
•  Some	programmers	don’t	like	the	“trick”	of	ini6alizing	the	input	
variable	with	a	value	other	than	a	sen6nel.	

#	Set	salary	to	a	value	to	ensure	that	the	loop		
#	executes	at	least	once.	
salary	=	0.0	
while	salary	>=	0	:	

salary	=	float(input("Enter	a	salary	or	-1	to	finish:	"))	
while	salary	>=	0	:	

34 9/16/16

•  An	alterna6ve	is	to	change	the	variable	with	a	read	before	the	loop.	

Modification Read
•  The	input	opera6on	at	the	bonom	of	the	loop	is	used	to	obtain	the	
next	input.	

#	Priming	read	
salary	=	float(input("Enter	a	salary	or	-1	to	finish:	"))	
while	salary	>=	0.0	:	
			total	=	total	+	salary	
			count	=	count	+	1	
			#	Modification	read	
			salary	=	float(input("Enter	a	salary	or	-1	to	finish:		
				"))	

35 9/16/16

Boolean Variables and Sentinels
•  A	boolean	variable	can	be	used	to	control	a	loop	

•  Some6mes	called	a	‘flag’	variable	

done	=	False	
while	not	done	:	
			value	=	float(input("Enter	a	salary	or	-1	to	

finish:	"))	
			if	value	<	0.0:	
						done	=	True	
			else	:	
						#	Process	value	
				
	

Initialize done so that the loop will execute	

Set done ‘flag’ to True if sentinel value is found	

36 9/16/16

Storyboards

9/16/16 37

Storyboards
•  One	useful	problem	solving	technique	is	the	use	of	storyboards	to	
model	user	interac6on.		It	can	help	answer:	
•  What	informa6on	does	the	user	provide,	and	in	which	order?		
•  What	informa6on	will	your	program	display,	and	in	which	format?		
•  What	should	happen	when	there	is	an	error?	
•  When	does	the	program	quit?	

•  A	storyboard	consists	of	annotated	sketches	for	each	step	in	an	ac8on	
sequence.	

38 9/16/16

Storyboard Example
•  Goal:	Conver6ng	a	sequence	of	values	

•  Will	require	a	loop	and	some	variables	
•  Handle	one	conversion	each	6me	through	the	loop	

39 9/16/16

What Can Go Wrong?
Unknown	unit	types	

•  What	is	the	user	misspells	cen6meters	and	inches?	
•  What	other	conversions	are	available?	
•  Solu6on:	

•  Show	a	list	of	the	acceptable	unit	types	

40 9/16/16

What Else Can Go Wrong?
•  How	does	the	user	quit	the	program?	

•  Storyboards	help	you	plan	a	program	
•  Knowing	the	flow	helps	you	structure	your	code	

41 9/16/16

